BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 31817617)

  • 1. Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway.
    Ha J; Kang E; Seo J; Cho S
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress.
    Teng CH; Huang WN; Meng TC
    J Biol Chem; 2007 Sep; 282(39):28395-28407. PubMed ID: 17681939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-specificity protein tyrosine phosphatase VHR down-regulates c-Jun N-terminal kinase (JNK).
    Todd JL; Rigas JD; Rafty LA; Denu JM
    Oncogene; 2002 Apr; 21(16):2573-83. PubMed ID: 11971192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual specific phosphatases (DUSPs) in cardiac hypertrophy and failure.
    Mutlak M; Kehat I
    Cell Signal; 2021 Aug; 84():110033. PubMed ID: 33933582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the M3/6 dual-specificity phosphatase enhances the activation of JNK by arsenite.
    Cotsiki M; Oehrl W; Samiotaki M; Theodosiou A; Panayotou G
    Cell Signal; 2012 Mar; 24(3):664-76. PubMed ID: 22100391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myristoylation of the dual-specificity phosphatase c-JUN N-terminal kinase (JNK) stimulatory phosphatase 1 is necessary for its activation of JNK signaling and apoptosis.
    Schwertassek U; Buckley DA; Xu CF; Lindsay AJ; McCaffrey MW; Neubert TA; Tonks NK
    FEBS J; 2010 Jun; 277(11):2463-73. PubMed ID: 20553486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of c-Jun N-terminal kinase and p38 kinase pathways in endothelial cells.
    Wadgaonkar R; Pierce JW; Somnay K; Damico RL; Crow MT; Collins T; Garcia JG
    Am J Respir Cell Mol Biol; 2004 Oct; 31(4):423-31. PubMed ID: 15231489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of angiopoietin-1/Tie-2 receptor signaling in endothelial cells by dual-specificity phosphatases 1, 4, and 5.
    Echavarria R; Hussain SN
    J Am Heart Assoc; 2013 Dec; 2(6):e000571. PubMed ID: 24308939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaffold Role of DUSP22 in ASK1-MKK7-JNK Signaling Pathway.
    Ju A; Cho YC; Kim BR; Park SG; Kim JH; Kim K; Lee J; Park BC; Cho S
    PLoS One; 2016; 11(10):e0164259. PubMed ID: 27711255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-specificity phosphatases: critical regulators with diverse cellular targets.
    Patterson KI; Brummer T; O'Brien PM; Daly RJ
    Biochem J; 2009 Mar; 418(3):475-89. PubMed ID: 19228121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases.
    Finch AR; Caunt CJ; Perrett RM; Tsaneva-Atanasova K; McArdle CA
    Cell Signal; 2012 May; 24(5):1002-11. PubMed ID: 22245064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional expression of MAP kinase phosphatase-2 protects against genotoxic stress-induced apoptosis by binding and selective dephosphorylation of nuclear activated c-jun N-terminal kinase.
    Cadalbert L; Sloss CM; Cameron P; Plevin R
    Cell Signal; 2005 Oct; 17(10):1254-64. PubMed ID: 16038800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of M3/6 (DUSP8) signaling complexes in response to arsenite-induced oxidative stress.
    Oehrl W; Cotsiki M; Panayotou G
    Cell Signal; 2013 Feb; 25(2):429-38. PubMed ID: 23159405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Protein Kinases and Obesity.
    Engin A
    Adv Exp Med Biol; 2017; 960():111-134. PubMed ID: 28585197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The JNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK.
    Willoughby EA; Perkins GR; Collins MK; Whitmarsh AJ
    J Biol Chem; 2003 Mar; 278(12):10731-6. PubMed ID: 12524447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.
    Zhao BM; Keasey SL; Tropea JE; Lountos GT; Dyas BK; Cherry S; Raran-Kurussi S; Waugh DS; Ulrich RG
    PLoS One; 2015; 10(8):e0134984. PubMed ID: 26302245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase.
    Dickinson RJ; Williams DJ; Slack DN; Williamson J; Seternes OM; Keyse SM
    Biochem J; 2002 May; 364(Pt 1):145-55. PubMed ID: 11988087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer.
    Wang HY; Cheng Z; Malbon CC
    Cancer Lett; 2003 Mar; 191(2):229-37. PubMed ID: 12618338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases.
    Sprowles A; Robinson D; Wu YM; Kung HJ; Wisdom R
    Exp Cell Res; 2005 Aug; 308(2):459-68. PubMed ID: 15950217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. c-Jun N-terminal kinase binding domain-dependent phosphorylation of mitogen-activated protein kinase kinase 4 and mitogen-activated protein kinase kinase 7 and balancing cross-talk between c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons.
    Repici M; Mare L; Colombo A; Ploia C; Sclip A; Bonny C; Nicod P; Salmona M; Borsello T
    Neuroscience; 2009 Mar; 159(1):94-103. PubMed ID: 19135136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.