These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31817780)

  • 1. Three-Dimensional Digital Reconstruction of Ti
    Stiapis CS; Skouras ED; Burganos VN
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Laguerre Tessellation for the Reconstruction of Ceramic Foams and Prediction of Transport Properties.
    Stiapis CS; Skouras ED; Burganos VN
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30965574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the structure and permeability of titanium foams for spinal fusion devices.
    Singh R; Lee PD; Lindley TC; Dashwood RJ; Ferrie E; Imwinkelried T
    Acta Biomater; 2009 Jan; 5(1):477-87. PubMed ID: 18657494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of porous hydroxyapatites by combination of gelcasting and foams burn out methods.
    Padilla S; Román J; Vallet-Regí M
    J Mater Sci Mater Med; 2002 Dec; 13(12):1193-7. PubMed ID: 15348665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability of polydisperse solid foams.
    Langlois V; Nguyen CT; Detrez F; Guilleminot J; Perrot C
    Phys Rev E; 2022 Jan; 105(1-2):015101. PubMed ID: 35193282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of three-dimensional porous media using a single thin section.
    Tahmasebi P; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066709. PubMed ID: 23005245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.
    Tong M; Cole K; Brito-Parada PR; Neethling S; Cilliers JJ
    Langmuir; 2017 Apr; 33(15):3839-3846. PubMed ID: 28345923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.
    Zieliński TG
    J Acoust Soc Am; 2015 Apr; 137(4):1790-801. PubMed ID: 25920832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile three-dimensional foam fabrication strategy for soft and hard tissue engineering.
    Xu C; Bai Y; Yang S; Yang H; Stout DA; Tran PA; Yang L
    Biomed Mater; 2018 Feb; 13(2):025018. PubMed ID: 29420309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural Parameters for Modelling of Superconducting Foams.
    Koblischka MR; Koblischka-Veneva A; Nouailhetas Q; Hajiri G; Berger K; Douine B; Gokhfeld D
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro degradation of porous poly(L-lactic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Aug; 21(15):1595-605. PubMed ID: 10885732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure-Property Relationship of Polyurethane Foams Modified with Baltic Sea Biomass: Microcomputed Tomography vs. Scanning Electron Microscopy.
    Kosmela P; Suchorzewski J; Formela K; Kazimierski P; Haponiuk JT; Piszczyk Ł
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of porous filter penneability via image-based stochastic reconstruction of spatial porosity correlations.
    Zhao F; Landis HR; Skerlos SJ
    Environ Sci Technol; 2005 Jan; 39(1):239-47. PubMed ID: 15667100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid foam templating - A route to tailor-made polymer foams.
    Andrieux S; Quell A; Stubenrauch C; Drenckhan W
    Adv Colloid Interface Sci; 2018 Jun; 256():276-290. PubMed ID: 29728156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys.
    Karczewski K; Stepniowski WJ; Salerno M
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary imbibition in open-cell monodisperse foams.
    Pitois O; Kaddami A; Langlois V
    J Colloid Interface Sci; 2020 Jul; 571():166-173. PubMed ID: 32199269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.
    Caparrós C; Guillem-Martí J; Molmeneu M; Punset M; Calero JA; Gil FJ
    J Mech Behav Biomed Mater; 2014 Nov; 39():79-86. PubMed ID: 25108271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.