BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 31817932)

  • 1. Fluorescent Single-Walled Carbon Nanotubes for Protein Detection.
    Hendler-Neumark A; Bisker G
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensing with Fluorescent Carbon Nanotubes.
    Ackermann J; Metternich JT; Herbertz S; Kruss S
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202112372. PubMed ID: 34978752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotubes as Optical Sensors in Biomedicine.
    Farrera C; Torres Andón F; Feliu N
    ACS Nano; 2017 Nov; 11(11):10637-10643. PubMed ID: 29087693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes.
    Iverson NM; Barone PW; Shandell M; Trudel LJ; Sen S; Sen F; Ivanov V; Atolia E; Farias E; McNicholas TP; Reuel N; Parry NM; Wogan GN; Strano MS
    Nat Nanotechnol; 2013 Nov; 8(11):873-80. PubMed ID: 24185942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications.
    Antonucci A; Kupis-Rozmysłowicz J; Boghossian AA
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11321-11331. PubMed ID: 28299937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in molecular recognition based on nanoengineered platforms.
    Mu B; Zhang J; McNicholas TP; Reuel NF; Kruss S; Strano MS
    Acc Chem Res; 2014 Apr; 47(4):979-88. PubMed ID: 24467652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle-Templated Molecular Recognition Platforms for Detection of Biological Analytes.
    Beyene AG; Demirer GS; Landry MP
    Curr Protoc Chem Biol; 2016 Sep; 8(3):197-223. PubMed ID: 27622569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent functionalization of single-walled carbon nanotubes by indocyanine green: Potential nanocomplexes for photothermal therapy.
    Zheng X; Zhou F
    J Xray Sci Technol; 2011; 19(2):275-84. PubMed ID: 21606588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Glucose Oxidase-Carbon Nanotube Conjugates for Tissue-Translatable Glucose Nanosensors.
    Nishitani S; Tran T; Puglise A; Yang S; Landry MP
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202311476. PubMed ID: 37990059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin T using near-infrared fluorescent single-walled carbon nanotube sensors.
    Zhang J; Kruss S; Hilmer AJ; Shimizu S; Schmois Z; De La Cruz F; Barone PW; Reuel NF; Heller DA; Strano MS
    Adv Healthc Mater; 2014 Mar; 3(3):412-23. PubMed ID: 23966175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications.
    Boghossian AA; Zhang J; Barone PW; Reuel NF; Kim JH; Heller DA; Ahn JH; Hilmer AJ; Rwei A; Arkalgud JR; Zhang CT; Strano MS
    ChemSusChem; 2011 Jul; 4(7):848-63. PubMed ID: 21751417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection.
    Wang J
    Anal Biochem; 2018 Jun; 550():49-53. PubMed ID: 29655769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic Assemblies of Single-Walled Carbon Nanotubes and Sequence-Tunable Peptoid Polymers Detect a Lectin Protein and Its Target Sugars.
    Chio L; Del Bonis-O'Donnell JT; Kline MA; Kim JH; McFarlane IR; Zuckermann RN; Landry MP
    Nano Lett; 2019 Nov; 19(11):7563-7572. PubMed ID: 30958010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendron-Polymer Hybrids as Tailorable Responsive Coronae of Single-Walled Carbon Nanotubes.
    Wulf V; Slor G; Rathee P; Amir RJ; Bisker G
    ACS Nano; 2021 Dec; 15(12):20539-20549. PubMed ID: 34878763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-walled carbon nanotubes as optical probes for bio-sensing and imaging.
    Pan J; Li F; Choi JH
    J Mater Chem B; 2017 Aug; 5(32):6511-6522. PubMed ID: 32264414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring.
    Giraldo JP; Landry MP; Kwak SY; Jain RM; Wong MH; Iverson NM; Ben-Naim M; Strano MS
    Small; 2015 Aug; 11(32):3973-84. PubMed ID: 25981520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared optical sensors based on single-walled carbon nanotubes.
    Barone PW; Baik S; Heller DA; Strano MS
    Nat Mater; 2005 Jan; 4(1):86-92. PubMed ID: 15592477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediatorless, Reversible Optical Nanosensor Enabled through Enzymatic Pocket Doping.
    Zubkovs V; Schuergers N; Lambert B; Ahunbay E; Boghossian AA
    Small; 2017 Nov; 13(42):. PubMed ID: 28940888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring Plant Health with Near-Infrared Fluorescent H
    Wu H; Nißler R; Morris V; Herrmann N; Hu P; Jeon SJ; Kruss S; Giraldo JP
    Nano Lett; 2020 Apr; 20(4):2432-2442. PubMed ID: 32097014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.