These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31818031)

  • 1. High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint.
    Kim Y; Hwang W
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low Cycle Fatigue Behavior of Plastically Pre-Strained HSLA S355MC and S460MC Steels.
    Prosgolitis CG; Kermanidis AT; Kamoutsi H; Haidemenopoulos GN
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
    Song W; Liu X; Berto F; Razavi SMJ
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cycle Fatigue Behavior of the Novel Steel and 30SiMn2MoV Steel at 700 °C.
    Zhao C; Zhang J; Fu J; Lian Y; Zhang Z; Zhang C; Huang J
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of V-N Microalloying on Low-Cycle Fatigue Property in the Welded Joints of Constructional Steel.
    Cui K; Yang H; Li Z; Wang G; Zhao H; Li Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely-Low-Cycle Fatigue Damage for Beam-to-Column Welded Joints Using Structural Details.
    Huang L; Qu W; Zhao E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel.
    Zhu Q; Zhang P; Peng X; Yan L; Li G
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel.
    Tang L; Qian C; Ince A; Zheng J; Li H; Han Z
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30072599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Loading Methods on the Fatigue Properties of Dissimilar Al/Steel Keyhole-Free FSSW Joints.
    Zhang Z; Yu Y; Zhao H; Tong H
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Low-Cycle Fatigue Behavior, Microstructure Evolution, and Life Prediction of SS304: Influence of Temperature.
    Mei T; Wang Q; Liu M; Jiang Y; Zou T; Cai Y
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cycle Fatigue Behavior and the Combined Cyclic Hardening Material Model of Plate-Shaped Zn-22Al Alloy for Seismic Dampers.
    Liu Z; Han J; Yang P
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture Toughness, Breakthrough Morphology, Microstructural Analysis of the T2 Copper-45 Steel Welded Joints.
    Ding H; Huang Q; Liu P; Bao Y; Chai G
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31968586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and Low Cycle Fatigue Properties of AA5083 H111 Friction Stir Welded Joint.
    Torzewski J; Grzelak K; Wachowski M; Kosturek R
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Cycle, Push-Pull Fatigue Fracture Behavior of High-C, Si-Al-Rich Nanostructured Bainite Steel.
    Zhao J; Ji H; Wang T
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29286325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg⁻Gd⁻Y⁻Zr Alloy.
    He C; Wu Y; Peng L; Su N; Li X; Yang K; Liu Y; Yuan S; Tian R
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the Ultra-Low-Cycle Fatigue Damage of Q345qC Steel and its Weld Joint.
    Tian Q; Zhuge H; Xie X
    Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31816879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carbon fiber type on monotonic and fatigue properties of orthopedic grade PEEK.
    Bonnheim N; Ansari F; Regis M; Bracco P; Pruitt L
    J Mech Behav Biomed Mater; 2019 Feb; 90():484-492. PubMed ID: 30448562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalogue of NIMS fatigue data sheets.
    Furuya Y; Nishikawa H; Hirukawa H; Nagashima N; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):1055-1072. PubMed ID: 31762842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.