These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31818031)

  • 21. A Multiscale Overview of Modelling Rolling Cyclic Fatigue in Bearing Elements.
    Abdullah MU; Khan ZA
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Strain Gradient on Fatigue Life of Carbon Steel for Pressure Vessels in Low-Cycle and High-Cycle Fatigue Regimes.
    Fujii T; Muhamad Azmi MSB; Tohgo K; Shimamura Y
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Low Temperature on the Fatigue Crack Propagation Behavior of Underwater Manned Vehicle Rudder Materials in Arctic Environments.
    Guo W; Yu L; Wu Z; Zhang Y; Cao C; Zeng Y; Yu L; Huang J
    ACS Omega; 2024 Sep; 9(37):38925-38935. PubMed ID: 39310199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling of Fatigue Microfracture in Porous Sintered Steel Using a Phase-Field Method.
    Tomić Z; Jarak T; Lesičar T; Gubeljak N; Tonković Z
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatigue Tests and Analysis on Welded Joints of Weathering Steel.
    Sheng R; Liu Y; Yang Y; Hao R; Chen A
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effect of Ultrasonic Peening Treatment on Fatigue Performance of Welded Joints.
    Zhao X; Wang M; Zhang Z; Liu Y
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research on the Properties and Low Cycle Fatigue of Sc-Modified AA2519-T62 FSW Joint.
    Kosturek R; Śnieżek L; Torzewski J; Ślęzak T; Wachowski M; Szachogłuchowicz I
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33228028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone.
    Zhao Z; Xu P; Cheng H; Miao J; Xiao F
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening.
    Sun Y; Wu H; Du H; Yao Z
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fracture Characteristics and Analysis in Dissimilar Cu-Al Alloy Joints Formed via Electromagnetic Pulse Welding.
    Wang P; Chen D; Ran Y; Yan Y; Peng H; Jiang X
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Wave Process of Plastic Deformation at Forging on the Fatigue Fracture Mechanism of Titanium Compressor Disks of Gas Turbine Engine.
    Shanyavskiy AA; Soldatenkov AP; Nikitin AD
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material.
    Bazaras Ž; Lukoševičius V
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Severe Plastic Deformation and Aging on Low Cycle Fatigue Behavior of Al-Mg-Si Alloys.
    Kim W; Kim K; Kim K
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Fatigue Behaviors of a Medium-Carbon Pearlitic Wheel-Steel with Elongated Sulfides in High-Cycle and Very-High-Cycle Regimes.
    Liu L; Ma Y; Liu S; Wang S
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue life of underwater wet welded low carbon steel SS400.
    Muhayat N; Matien YA; Sukanto H; Saputro YCN; Triyono
    Heliyon; 2020 Feb; 6(2):e03366. PubMed ID: 32072056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and Numerical Study of Combined High and Low Cycle Fatigue Performance of Low Alloy Steel and Engineering Application.
    Tang Z; Chen Z; He Z; Hu X; Xue H; Zhuge H
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of Fatigue Fracture Detection of Bridge Steel Structures under Cyclic Loads.
    Yang D; Yao L; Pang Q
    Comput Intell Neurosci; 2022; 2022():8534824. PubMed ID: 36148424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mode II Behavior of High-Strength Concrete under Monotonic, Cyclic and Fatigue Loading.
    Becks H; Classen M
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remaining Life Assessment for Steel After Low-Cycle Fatigue by Surface Crack Image.
    Shi CS; Zeng B; Liu GL; Zhang KS
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.