BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31818467)

  • 1. Structural and Dynamical Signatures of Local DNA Damage in Live Cells.
    Eaton JA; Zidovska A
    Biophys J; 2020 May; 118(9):2168-2180. PubMed ID: 31818467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin mobility is increased at sites of DNA double-strand breaks.
    Krawczyk PM; Borovski T; Stap J; Cijsouw T; ten Cate R; Medema JP; Kanaar R; Franken NA; Aten JA
    J Cell Sci; 2012 May; 125(Pt 9):2127-33. PubMed ID: 22328517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DSB (Im)mobility and DNA repair compartmentalization in mammalian cells.
    Lemaître C; Soutoglou E
    J Mol Biol; 2015 Feb; 427(3):652-8. PubMed ID: 25463437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture.
    Timm S; Lorat Y; Jakob B; Taucher-Scholz G; Rübe CE
    Radiother Oncol; 2018 Dec; 129(3):600-610. PubMed ID: 30049456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Dynamic Behavior of Chromatin in Response to DNA Double-Strand Breaks.
    García Fernández F; Fabre E
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring global changes in chromatin compaction states upon localized DNA damage with tools of fluorescence anisotropy.
    Kesavan PS; Bohra D; Roy S; Mazumder A
    Mol Biol Cell; 2020 Jun; 31(13):1403-1410. PubMed ID: 32320322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax.
    Goodarzi AA; Jeggo P; Lobrich M
    DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global chromatin mobility induced by a DSB is dictated by chromosomal conformation and defines the HR outcome.
    García Fernández F; Almayrac E; Carré Simon À; Batrin R; Khalil Y; Boissac M; Fabre E
    Elife; 2022 Sep; 11():. PubMed ID: 36125964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts.
    Hansen RK; Mund A; Poulsen SL; Sandoval M; Klement K; Tsouroula K; Tollenaere MA; Räschle M; Soria R; Offermanns S; Worzfeld T; Grosse R; Brandt DT; Rozell B; Mann M; Cole F; Soutoglou E; Goodarzi AA; Daniel JA; Mailand N; Bekker-Jensen S
    Nat Cell Biol; 2016 Dec; 18(12):1357-1366. PubMed ID: 27820601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Genome Organization: Causes and Consequences for DNA Damage and Repair.
    Carré-Simon À; Fabre E
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal dynamics of 53BP1 dimer recruitment to a DNA double strand break.
    Lou J; Priest DG; Solano A; Kerjouan A; Hinde E
    Nat Commun; 2020 Nov; 11(1):5776. PubMed ID: 33188174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin modification and NBS1: their relationship in DNA double-strand break repair.
    Saito Y; Zhou H; Kobayashi J
    Genes Genet Syst; 2016; 90(4):195-208. PubMed ID: 26616756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear Foci Assays in Live Cells.
    Mori E; Asaithamby A
    Methods Mol Biol; 2019; 1984():75-85. PubMed ID: 31267422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of chromatin compaction on simulated early radiation-induced DNA damage using Geant4-DNA.
    Tang N; Bueno M; Meylan S; Incerti S; Tran HN; Vaurijoux A; Gruel G; Villagrasa C
    Med Phys; 2019 Mar; 46(3):1501-1511. PubMed ID: 30689203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bon voyage: A transcriptional journey around DNA breaks.
    Caron P; van der Linden J; van Attikum H
    DNA Repair (Amst); 2019 Oct; 82():102686. PubMed ID: 31476573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks.
    Bekker-Jensen S; Mailand N
    FEBS Lett; 2011 Sep; 585(18):2914-9. PubMed ID: 21664912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global chromatin fibre compaction in response to DNA damage.
    Hamilton C; Hayward RL; Gilbert N
    Biochem Biophys Res Commun; 2011 Nov; 414(4):820-5. PubMed ID: 22020103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organizing DNA repair in the nucleus: DSBs hit the road.
    Marnef A; Legube G
    Curr Opin Cell Biol; 2017 Jun; 46():1-8. PubMed ID: 28068556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer.
    Lassmann M; Hänscheid H; Gassen D; Biko J; Meineke V; Reiners C; Scherthan H
    J Nucl Med; 2010 Aug; 51(8):1318-25. PubMed ID: 20660387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.