These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 31818561)
1. Classifying grass-dominated habitats from remotely sensed data: The influence of spectral resolution, acquisition time and the vegetation classification system on accuracy and thematic resolution. Bradter U; O'Connell J; Kunin WE; Boffey CWH; Ellis RJ; Benton TG Sci Total Environ; 2020 Apr; 711():134584. PubMed ID: 31818561 [TBL] [Abstract][Full Text] [Related]
2. Field spectroscopy data from non-arable, grass-dominated objects in an intensively used agricultural landscape in East Anglia, UK. Bradter U; O'Connell J; Kunin WE; Boffey CWH; Ellis RJ; Benton TG Data Brief; 2020 Feb; 28():104888. PubMed ID: 31886347 [TBL] [Abstract][Full Text] [Related]
3. The utility of airborne hyperspectral and satellite multispectral images in identifying Natura 2000 non-forest habitats for conservation purposes. Jarocińska A; Kopeć D; Niedzielko J; Wylazłowska J; Halladin-Dąbrowska A; Charyton J; Piernik A; Kamiński D Sci Rep; 2023 Mar; 13(1):4549. PubMed ID: 36941443 [TBL] [Abstract][Full Text] [Related]
4. The repeatability of vegetation classification and mapping. Hearn SM; Healey JR; McDonald MA; Turner AJ; Wong JL; Stewart GB J Environ Manage; 2011 Apr; 92(4):1174-84. PubMed ID: 21232843 [TBL] [Abstract][Full Text] [Related]
5. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact. Khanna S; Santos MJ; Ustin SL; Shapiro K; Haverkamp PJ; Lay M Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439504 [TBL] [Abstract][Full Text] [Related]
6. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing. Hakkenberg CR; Peet RK; Urban DL; Song C Ecol Appl; 2018 Jan; 28(1):177-190. PubMed ID: 29024180 [TBL] [Abstract][Full Text] [Related]
7. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. Zomer RJ; Trabucco A; Ustin SL J Environ Manage; 2009 May; 90(7):2170-7. PubMed ID: 18395960 [TBL] [Abstract][Full Text] [Related]
8. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing. Hakkenberg CR; Zhu K; Peet RK; Song C Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965 [TBL] [Abstract][Full Text] [Related]
9. A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon. Lu D; Batistella M; de Miranda EE; Moran E Photogramm Eng Remote Sensing; 2008; 74(3):311-321. PubMed ID: 19789716 [TBL] [Abstract][Full Text] [Related]
10. Forest tree species identification and its response to spatial scale based on multispectral and multi-resolution remotely sensed data. Xu KJ; Tian QJ; Yue JB; Tang SF Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3986-3994. PubMed ID: 30584725 [TBL] [Abstract][Full Text] [Related]
11. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data. Stratoulias D; Balzter H; Sykioti O; Zlinszky A; Tóth VR Sensors (Basel); 2015 Sep; 15(9):22956-69. PubMed ID: 26378538 [TBL] [Abstract][Full Text] [Related]
12. In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape. Rajesh CB; Kumar CVSSM; Jha SS; Ramachandran KI; Nidamanuri RR Data Brief; 2023 Oct; 50():109510. PubMed ID: 37663764 [TBL] [Abstract][Full Text] [Related]
13. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image. Rapinel S; Clément B; Magnanon S; Sellin V; Hubert-Moy L J Environ Manage; 2014 Nov; 144():236-46. PubMed ID: 24973612 [TBL] [Abstract][Full Text] [Related]
14. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images. Knauer U; Matros A; Petrovic T; Zanker T; Scott ES; Seiffert U Plant Methods; 2017; 13():47. PubMed ID: 28630643 [TBL] [Abstract][Full Text] [Related]
15. Spectrally driven classification of high spatial resolution, hyperspectral imagery: a tool for mapping in-stream habitat. Legleiter CJ Environ Manage; 2003 Sep; 32(3):399-411. PubMed ID: 14753625 [TBL] [Abstract][Full Text] [Related]
16. Mapping of Phragmites in estuarine wetlands using high-resolution aerial imagery. Walter M; Mondal P Environ Monit Assess; 2023 Mar; 195(4):478. PubMed ID: 36928355 [TBL] [Abstract][Full Text] [Related]
17. Mangrove Species Classification from Unmanned Aerial Vehicle Hyperspectral Images Using Object-Oriented Methods Based on Feature Combination and Optimization. Ye F; Zhou B Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000887 [TBL] [Abstract][Full Text] [Related]
18. A comparison of spatial and spectral image resolution for mapping invasive plants in coastal california. Underwood EC; Ustin SL; Ramirez CM Environ Manage; 2007 Jan; 39(1):63-83. PubMed ID: 17136630 [TBL] [Abstract][Full Text] [Related]
19. Sophisticated Vegetation Classification Based on Feature Band Set Using Hyperspectral Image. Shang K; Zhang X; Sun Yan-li ; Zhang LF; Wang SD; Zhuang Z Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1669-76. PubMed ID: 26601388 [TBL] [Abstract][Full Text] [Related]
20. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Ozigis MS; Kaduk JD; Jarvis CH; da Conceição Bispo P; Balzter H Environ Pollut; 2020 Jan; 256():113360. PubMed ID: 31672372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]