These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31818572)

  • 1. Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale.
    Feng S; Hao Z
    Sci Total Environ; 2020 Feb; 704():135250. PubMed ID: 31818572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields.
    Feng S; Hao Z; Zhang X; Hao F
    Sci Total Environ; 2019 Nov; 689():1228-1234. PubMed ID: 31466161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China.
    Li E; Zhao J; Pullens JWM; Yang X
    Sci Total Environ; 2022 Mar; 812():152461. PubMed ID: 34942238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of climate extreme events and their causality on maize yield in South Africa.
    Simanjuntak C; Gaiser T; Ahrends HE; Ceglar A; Singh M; Ewert F; Srivastava AK
    Sci Rep; 2023 Aug; 13(1):12462. PubMed ID: 37528122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest.
    Zhu P; Jin Z; Zhuang Q; Ciais P; Bernacchi C; Wang X; Makowski D; Lobell D
    Glob Chang Biol; 2018 Oct; 24(10):4718-4730. PubMed ID: 29901245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Future global concurrent droughts and their effects on maize yield.
    Muthuvel D; Sivakumar B; Mahesha A
    Sci Total Environ; 2023 Jan; 855():158860. PubMed ID: 36126712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future.
    Leng G; Hall J
    Sci Total Environ; 2019 Mar; 654():811-821. PubMed ID: 30448671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying irrigation cooling benefits to maize yield in the US Midwest.
    Li Y; Guan K; Peng B; Franz TE; Wardlow B; Pan M
    Glob Chang Biol; 2020 May; 26(5):3065-3078. PubMed ID: 32167221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.
    Zhang T; Huang Y
    J Sci Food Agric; 2012 Jun; 92(8):1643-52. PubMed ID: 22190019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future climate impacts on maize farming and food security in Malawi.
    Stevens T; Madani K
    Sci Rep; 2016 Nov; 6():36241. PubMed ID: 27824092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China.
    Lu Y; Hu H; Li C; Tian F
    Sci Rep; 2018 Nov; 8(1):16700. PubMed ID: 30420656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States.
    Li Y; Guan K; Schnitkey GD; DeLucia E; Peng B
    Glob Chang Biol; 2019 Jul; 25(7):2325-2337. PubMed ID: 31033107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating US agriculture in a modern Dust Bowl drought.
    Glotter M; Elliott J
    Nat Plants; 2016 Dec; 3():16193. PubMed ID: 27941818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches.
    Jin Z; Zhuang Q; Tan Z; Dukes JS; Zheng B; Melillo JM
    Glob Chang Biol; 2016 Sep; 22(9):3112-26. PubMed ID: 27251794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting impacts of dry versus humid heat on US corn and soybean yields.
    Ting M; Lesk C; Liu C; Li C; Horton RM; Coffel ED; Rogers CDW; Singh D
    Sci Rep; 2023 Jan; 13(1):710. PubMed ID: 36639417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter?
    Williams A; Hunter MC; Kammerer M; Kane DA; Jordan NR; Mortensen DA; Smith RG; Snapp S; Davis AS
    PLoS One; 2016; 11(8):e0160974. PubMed ID: 27560666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future warming increases probability of globally synchronized maize production shocks.
    Tigchelaar M; Battisti DS; Naylor RL; Ray DK
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6644-6649. PubMed ID: 29891651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming.
    Zhang Y; Zhao Y
    PLoS One; 2017; 12(5):e0176766. PubMed ID: 28459880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields.
    Heino M; Kinnunen P; Anderson W; Ray DK; Puma MJ; Varis O; Siebert S; Kummu M
    Sci Rep; 2023 Mar; 13(1):3583. PubMed ID: 36869041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.