These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31818576)

  • 21. HERO: Hybrid Effortless Resilient Operation Stations for Flash Flood Early Warning Systems.
    Wannachai A; Aramkul S; Suntaranont B; Somchit Y; Champrasert P
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt.
    Youssef AM; Pourghasemi HR; El-Haddad BA
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66768-66792. PubMed ID: 35508847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. "Know What to Do If You Encounter a Flash Flood": Mental Models Analysis for Improving Flash Flood Risk Communication and Public Decision Making.
    Lazrus H; Morss RE; Demuth JL; Lazo JK; Bostrom A
    Risk Anal; 2016 Feb; 36(2):411-27. PubMed ID: 26369521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flash-Flood Potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models.
    Costache R
    Sci Total Environ; 2019 Apr; 659():1115-1134. PubMed ID: 31096326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forecasting of flash flood susceptibility mapping using random forest regression model and geographic information systems.
    Wahba M; Essam R; El-Rawy M; Al-Arifi N; Abdalla F; Elsadek WM
    Heliyon; 2024 Jul; 10(13):e33982. PubMed ID: 39071561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms.
    Riazi M; Khosravi K; Shahedi K; Ahmad S; Jun C; Bateni SM; Kazakis N
    Sci Total Environ; 2023 May; 871():162066. PubMed ID: 36773901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward Probabilistic Prediction of Flash Flood Human Impacts.
    Terti G; Ruin I; Gourley JJ; Kirstetter P; Flamig Z; Blanchet J; Arthur A; Anquetin S
    Risk Anal; 2019 Jan; 39(1):140-161. PubMed ID: 29059704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning-based potential loss assessment of maize and rice production due to flash flood in Himachal Pradesh, India.
    Koley S; Kumar SN
    Environ Monit Assess; 2024 May; 196(6):497. PubMed ID: 38695999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh.
    Rahman M; Chen N; Elbeltagi A; Islam MM; Alam M; Pourghasemi HR; Tao W; Zhang J; Shufeng T; Faiz H; Baig MA; Dewan A
    J Environ Manage; 2021 Oct; 295():113086. PubMed ID: 34153582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting temporal and spatial variability in flood vulnerability and risk of rural communities at the watershed scale.
    Avand M; Moradi H; Ramazanzadeh Lasboyee M
    J Environ Manage; 2022 Dec; 323():116261. PubMed ID: 36150353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the Man-Made Causes of Shiraz Flash Flood: Iran, 2019.
    Heidari M; Sayfouri N; Miresmaeeli SS; Nasiri A
    Prehosp Disaster Med; 2020 Oct; 35(5):588-591. PubMed ID: 32638682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flash flood awareness in southwest Virginia.
    Knocke ET; Kolivras KN
    Risk Anal; 2007 Feb; 27(1):155-69. PubMed ID: 17362407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Sustainable Early Warning System Using Rolling Forecasts Based on ANN and Golden Ratio Optimization Methods to Accurately Predict Real-Time Water Levels and Flash Flood.
    Alasali F; Tawalbeh R; Ghanem Z; Mohammad F; Alghazzawi M
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can geomorphic flood descriptors coupled with machine learning models enhance in quantifying flood risks over data-scarce catchments? Development of a hybrid framework for Ganga basin (India).
    Tripathi V; Mohanty MP
    Environ Sci Pollut Res Int; 2024 May; ():. PubMed ID: 38709408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flood hazard potential evaluation using decision tree state-of-the-art models.
    Costache R; Arabameri A; Costache I; Crăciun A; Islam ARMT; Abba SI; Sahana M; Pandey M; Tin TT; Pham BT
    Risk Anal; 2024 Feb; 44(2):439-458. PubMed ID: 37357220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area.
    Tien Bui D; Hoang ND; Martínez-Álvarez F; Ngo PT; Hoa PV; Pham TD; Samui P; Costache R
    Sci Total Environ; 2020 Jan; 701():134413. PubMed ID: 31706212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China.
    Hong H; Tsangaratos P; Ilia I; Liu J; Zhu AX; Chen W
    Sci Total Environ; 2018 Jun; 625():575-588. PubMed ID: 29291572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors.
    Costache R; Arabameri A; Blaschke T; Pham QB; Pham BT; Pandey M; Arora A; Linh NTT; Costache I
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India.
    Arora A; Arabameri A; Pandey M; Siddiqui MA; Shukla UK; Bui DT; Mishra VN; Bhardwaj A
    Sci Total Environ; 2021 Jan; 750():141565. PubMed ID: 32882492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado.
    Morss RE; Demuth JL; Bostrom A; Lazo JK; Lazrus H
    Risk Anal; 2015 Nov; 35(11):2009-28. PubMed ID: 25988286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.