BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31818650)

  • 21. On the actual state of industrial quality assurance procedures with regard to (106)Ru ophthalmic plaques.
    Kaulich TW; Zurheide J; Haug T; Budach W; Nüsslin F; Bamberg M
    Strahlenther Onkol; 2004 Jun; 180(6):358-64. PubMed ID: 15175870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Varian HDR surface applicators - commissioning and clinical implementation.
    Iftimia I; McKee AB; Halvorsen PH
    J Appl Clin Med Phys; 2016 Mar; 17(2):231-248. PubMed ID: 27074486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evaluation of a 2D diode array in "magic phantom" for use in high dose rate brachytherapy pretreatment quality assurance.
    Espinoza A; Petasecca M; Fuduli I; Howie A; Bucci J; Corde S; Jackson M; Lerch ML; Rosenfeld AB
    Med Phys; 2015 Feb; 42(2):663-673. PubMed ID: 28102606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A patch source model for treatment planning of ruthenium ophthalmic applicators.
    Astrahan MA
    Med Phys; 2003 Jun; 30(6):1219-28. PubMed ID: 12852546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and evaluation of a HDR skin applicator with flattening filter.
    Granero D; Pérez-Calatayud J; Gimeno J; Ballester F; Casal E; Crispín V; van der Laarse R
    Med Phys; 2008 Feb; 35(2):495-503. PubMed ID: 18383670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calculation of beta-ray dose distributions from ophthalmic applicators and comparison with measurements in a model eye.
    Cross WG; Hokkanen J; Järvinen H; Mourtada F; Sipilä P; Soares CG; Vynckier S
    Med Phys; 2001 Jul; 28(7):1385-96. PubMed ID: 11488569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Optimizing target volume assessment in irradiation of intraocular melanomas with ruthenium applicators].
    Poier E; Langmann G; Leitner H; Vidic B
    Fortschr Ophthalmol; 1991; 88(2):158-60. PubMed ID: 1855736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recommendations on detectors and quality control procedures for brachytherapy beta sources.
    Kollaard RP; Dries WJ; van Kleffens HJ; Aalbers TH; van der Marel H; Marijnissen HP; Piessens M; Schaart DR; de Vroome H
    Radiother Oncol; 2006 Feb; 78(2):223-9. PubMed ID: 16457901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.
    Roué A; Venselaar JL; Ferreira IH; Bridier A; Van Dam J
    Radiother Oncol; 2007 Apr; 83(1):86-93. PubMed ID: 17368842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Technique for routine output verification of Leipzig applicators with a well chamber.
    Pérez-Calatayud J; Granero D; Ballester F; Crispín V; Van der Laarse R
    Med Phys; 2006 Jan; 33(1):16-20. PubMed ID: 16485404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators.
    Moradi F; Ung NM; Khandaker MU; Mahdiraji GA; Saad M; Abdul Malik R; Bustam AZ; Zaili Z; Bradley DA
    Phys Med Biol; 2017 Jul; 62(16):6550-6566. PubMed ID: 28708603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absorbed dose measurements of a handheld 50 kVP X-ray source in water with thermoluminescence dosemeters.
    Soares C; Drupieski C; Wingert B; Pritchett G; Pagonis V; O'Brien M; Sliski A; Bilski P; Olko P
    Radiat Prot Dosimetry; 2006; 120(1-4):78-82. PubMed ID: 16735571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water.
    Tailor R; Tolani N; Ibbott GS
    Med Phys; 2008 Sep; 35(9):4063-9. PubMed ID: 18841858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of Thermoluminescence Dosimetry for QA in High-Dose-Rate Skin Surface Brachytherapy with Custom-Flap Applicator.
    Manna F; Pugliese M; Buonanno F; Gherardi F; Iannacone E; La Verde G; Muto P; Arrichiello C
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rectum dose analysis employing a multi-purpose brachytherapy phantom.
    Huh H; Kim W; Loh JJ; Lee S; Kim CY; Lee S; Shin D; Shin D; Cho S; Jang J; Lim S; Cho KH; Kwon S; Kim S
    Jpn J Clin Oncol; 2007 May; 37(5):391-8. PubMed ID: 17538010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.
    Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D
    Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thin CaSO4:Dy thermoluminescent dosimeters for calibration of 90Sr+90Y applicators.
    Antonio PL; Oliveira ML; Caldas LV
    Appl Radiat Isot; 2012 Apr; 70(4):790-3. PubMed ID: 22304964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance assessment of the BEBIG MultiSource high dose rate brachytherapy treatment unit.
    Palmer A; Mzenda B
    Phys Med Biol; 2009 Dec; 54(24):7417-34. PubMed ID: 19934487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms.
    Moura ES; Micka JA; Hammer CG; Culberson WS; DeWerd LA; Rostelato ME; Zeituni CA
    Med Phys; 2015 Apr; 42(4):1566-74. PubMed ID: 25832047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.