BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 31818856)

  • 21. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating embryonic stem cells.
    Magli A; Schnettler E; Swanson SA; Borges L; Hoffman K; Stewart R; Thomson JA; Keirstead SA; Perlingeiro RC
    Stem Cells; 2014 Aug; 32(8):2072-83. PubMed ID: 24677751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w hESCs enable studying early human cardiac differentiation.
    Den Hartogh SC; Schreurs C; Monshouwer-Kloots JJ; Davis RP; Elliott DA; Mummery CL; Passier R
    Stem Cells; 2015 Jan; 33(1):56-67. PubMed ID: 25187301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time.
    Razy-Krajka F; Gravez B; Kaplan N; Racioppi C; Wang W; Christiaen L
    Elife; 2018 Feb; 7():. PubMed ID: 29431097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification.
    Bondue A; Lapouge G; Paulissen C; Semeraro C; Iacovino M; Kyba M; Blanpain C
    Cell Stem Cell; 2008 Jul; 3(1):69-84. PubMed ID: 18593560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm.
    Carmena A; Gisselbrecht S; Harrison J; Jiménez F; Michelson AM
    Genes Dev; 1998 Dec; 12(24):3910-22. PubMed ID: 9869644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vessel and blood specification override cardiac potential in anterior mesoderm.
    Schoenebeck JJ; Keegan BR; Yelon D
    Dev Cell; 2007 Aug; 13(2):254-67. PubMed ID: 17681136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors.
    den Hartogh SC; Wolstencroft K; Mummery CL; Passier R
    Sci Rep; 2016 Jan; 6():19386. PubMed ID: 26783251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner.
    Chan SS; Shi X; Toyama A; Arpke RW; Dandapat A; Iacovino M; Kang J; Le G; Hagen HR; Garry DJ; Kyba M
    Cell Stem Cell; 2013 May; 12(5):587-601. PubMed ID: 23642367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation.
    Garriock RJ; Chalamalasetty RB; Kennedy MW; Canizales LC; Lewandoski M; Yamaguchi TP
    Development; 2015 May; 142(9):1628-38. PubMed ID: 25922526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.
    Bhattacherjee V; Mukhopadhyay P; Singh S; Johnson C; Philipose JT; Warner CP; Greene RM; Pisano MM
    Differentiation; 2007 Jun; 75(5):463-77. PubMed ID: 17286603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How Mesp1 makes a move.
    Kelly RG
    J Cell Biol; 2016 May; 213(4):411-3. PubMed ID: 27185831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early patterning and specification of cardiac progenitors in gastrulating mesoderm.
    Devine WP; Wythe JD; George M; Koshiba-Takeuchi K; Bruneau BG
    Elife; 2014 Oct; 3():. PubMed ID: 25296024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hey2 regulates the size of the cardiac progenitor pool during vertebrate heart development.
    Gibb N; Lazic S; Yuan X; Deshwar AR; Leslie M; Wilson MD; Scott IC
    Development; 2018 Nov; 145(22):. PubMed ID: 30355727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hand1 regulates cardiomyocyte proliferation versus differentiation in the developing heart.
    Risebro CA; Smart N; Dupays L; Breckenridge R; Mohun TJ; Riley PR
    Development; 2006 Nov; 133(22):4595-606. PubMed ID: 17050624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Craniofacial Muscle Development.
    Michailovici I; Eigler T; Tzahor E
    Curr Top Dev Biol; 2015; 115():3-30. PubMed ID: 26589919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis.
    Noden DM; Marcucio R; Borycki AG; Emerson CP
    Dev Dyn; 1999 Oct; 216(2):96-112. PubMed ID: 10536051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specification and formation of the neural crest: Perspectives on lineage segregation.
    Prasad MS; Charney RM; García-Castro MI
    Genesis; 2019 Jan; 57(1):e23276. PubMed ID: 30576078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells.
    Evans DJ; Noden DM
    Dev Dyn; 2006 May; 235(5):1310-25. PubMed ID: 16395689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new heart for a new head in vertebrate cardiopharyngeal evolution.
    Diogo R; Kelly RG; Christiaen L; Levine M; Ziermann JM; Molnar JL; Noden DM; Tzahor E
    Nature; 2015 Apr; 520(7548):466-73. PubMed ID: 25903628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor.
    Petratou K; Spencer SA; Kelsh RN; Lister JA
    PLoS One; 2021; 16(1):e0244794. PubMed ID: 33439865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.