These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31818943)

  • 1. Second-order cues to figure motion enable object detection during prey capture by praying mantises.
    Nityananda V; O'Keeffe J; Umeton D; Simmons A; Read JCA
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):27018-27027. PubMed ID: 31818943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Form of Stereo Vision in the Praying Mantis.
    Nityananda V; Tarawneh G; Henriksen S; Umeton D; Simmons A; Read JCA
    Curr Biol; 2018 Feb; 28(4):588-593.e4. PubMed ID: 29429616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion-in-depth perception and prey capture in the praying mantis
    Nityananda V; Joubier C; Tan J; Tarawneh G; Read JCA
    J Exp Biol; 2019 May; 222(Pt 11):. PubMed ID: 31064852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small or far away? Size and distance perception in the praying mantis.
    Nityananda V; Bissianna G; Tarawneh G; Read J
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1697):. PubMed ID: 27269605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Central Complex Neurons in Prey Detection and Tracking in the Freely Moving Praying Mantis (
    Wosnitza A; Martin JP; Pollack AJ; Svenson GJ; Ritzmann RE
    Front Neural Circuits; 2022; 16():893004. PubMed ID: 35769200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of prey capture kinematics in relation to prey distance helps predict success.
    Oufiero CE; Garikipati L; McMillan E; Katherine Sullivan M; Turnbaugh R
    J Exp Biol; 2024 Jun; 227(11):. PubMed ID: 38785337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal state effects on behavioral shifts in freely behaving praying mantises (Tenodera sinensis).
    Pickard SC; Bertsch DJ; Le Garrec Z; Ritzmann RE; Quinn RD; Szczecinski NS
    PLoS Comput Biol; 2021 Dec; 17(12):e1009618. PubMed ID: 34928939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioural interactions between the lizard
    Fukudome M; Yamawaki Y
    J Ethol; 2016; 34(3):231-241. PubMed ID: 27829700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contrast sensitivity function of the praying mantis Sphodromantis lineola.
    Nityananda V; Tarawneh G; Jones L; Busby N; Herbert W; Davies R; Read JC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Aug; 201(8):741-50. PubMed ID: 25894490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The predatory strike of free ranging praying mantises, Sphodromantis lineola (Burmeister). II: Strikes in the horizontal plane.
    Cleal KS; Prete FR
    Brain Behav Evol; 1996; 48(4):191-204. PubMed ID: 8886390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational model of stereoscopic prey capture in praying mantises.
    O'Keeffe J; Yap SH; Llamas-Cornejo I; Nityananda V; Read JCA
    PLoS Comput Biol; 2022 May; 18(5):e1009666. PubMed ID: 35587948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aversive Learning in the Praying Mantis (
    Carle T; Horiwaki R; Hurlbert A; Yamawaki Y
    J Insect Behav; 2018; 31(2):158-175. PubMed ID: 29628622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of variation in feeding strike kinematics of juvenile ghost praying mantis (Phyllocrania paradoxa): are components of the strike stereotypic?
    Oufiero CE; Nguyen T; Sragner A; Ellis A
    J Exp Biol; 2016 Sep; 219(Pt 17):2733-42. PubMed ID: 27358472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crypsis by background matching and disruptive coloration as drivers of substrate occupation in sympatric Amazonian bark praying mantises.
    de Alcantara Viana JV; Campos Duarte R; Vieira C; Augusto Poleto Antiqueira P; Bach A; de Mello G; Silva L; Rabelo Oliveira Leal C; Quevedo Romero G
    Sci Rep; 2023 Nov; 13(1):19985. PubMed ID: 37968331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras.
    Kane SA; Zamani M
    J Exp Biol; 2014 Jan; 217(Pt 2):225-34. PubMed ID: 24431144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulus speed and order of presentation effect the visually released predatory behaviors of the praying mantis Sphodromantis lineola (Burr.).
    Prete FR; Placek PJ; Wilson MA; Mahaffey RJ; Nemcek RR
    Brain Behav Evol; 1993; 42(6):281-94. PubMed ID: 8275297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The visually controlled prey-capture behaviour of the European mantispid Mantispa styriaca.
    Kral K; Vernik M; Devetak D
    J Exp Biol; 2000 Jul; 203(Pt 14):2117-23. PubMed ID: 10862724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The predatory strike of free ranging praying mantises, Sphodromantis lineola (Burmeister). I: Strikes in the mid-sagittal plane.
    Prete FR; Cleal KS
    Brain Behav Evol; 1996; 48(4):173-90. PubMed ID: 8886389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of time-based figure-ground segregation.
    Kandil FI; Fahle M
    Eur J Neurosci; 2003 Nov; 18(10):2874-82. PubMed ID: 14656337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
    Nicholas S; Supple J; Leibbrandt R; Gonzalez-Bellido PT; Nordström K
    J Neurosci; 2018 Dec; 38(50):10725-10733. PubMed ID: 30373766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.