These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31819088)

  • 1. Curie-Weiss behavior of liquid structure and ideal glass state.
    Ryu CW; Dmowski W; Kelton KF; Lee GW; Park ES; Morris JR; Egami T
    Sci Rep; 2019 Dec; 9(1):18579. PubMed ID: 31819088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breakdown of the Stokes-Einstein relationship and rapid structural ordering in CuZrAl metallic glass-forming liquids.
    Chen FZ; Mauro NA; Bertrand SM; McGrath P; Zimmer L; Kelton KF
    J Chem Phys; 2021 Sep; 155(10):104501. PubMed ID: 34525827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural evolution in Au- and Pd-based metallic glass forming liquids and the case for improved molecular dynamics force fields.
    Chen FZ; Ruhland K; Umland C; Bertrand SM; Vogt AJ; Kelton KF; Mauro NA
    J Chem Phys; 2022 Nov; 157(19):194501. PubMed ID: 36414450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean-field model for the Curie-Weiss temperature dependence of coherence length in metallic liquids.
    Lieou CKC; Egami T
    Phys Rev E; 2022 Apr; 105(4-1):044135. PubMed ID: 35590557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medium-range atomic correlation in simple liquids. II. Theory of temperature dependence.
    Egami T; Ryu CW
    Phys Rev E; 2021 Dec; 104(6-1):064110. PubMed ID: 35030900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ideality of liquid structure: A case study for metallic alloy liquids.
    Ryu CW; Dmowski W; Egami T
    Phys Rev E; 2020 Mar; 101(3-1):030601. PubMed ID: 32289960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the deviation from a Curie-Weiss behavior of the ZnFe
    Melo Quintero J; Salcedo Rodríguez KL; Gómez Albarracín FA; Rosales HD; Mendoza Zélis P; Stewart SJ; Errico LA; Rodríguez Torres C
    Heliyon; 2019 Jan; 5(1):e01170. PubMed ID: 30775570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a d
    Jiang N; Ramanathan A; Baumbach RE; La Pierre HS
    Chem Sci; 2020 Oct; 11(43):11811-11817. PubMed ID: 34123207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2.
    Helton JS; Matan K; Shores MP; Nytko EA; Bartlett BM; Yoshida Y; Takano Y; Suslov A; Qiu Y; Chung JH; Nocera DG; Lee YS
    Phys Rev Lett; 2007 Mar; 98(10):107204. PubMed ID: 17358563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why Is the Range of Timescale So Wide in Glass-Forming Liquid?
    Egami T; Ryu CW
    Front Chem; 2020; 8():579169. PubMed ID: 33134277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-liquid state with precursor ferromagnetic clusters interacting antiferromagnetically in frustrated glassy tetragonal spinel Zn
    Jena SK; Seehra MS; Sarkar T; Reehuis M; Hoser A; Weise B; Thota S
    J Phys Condens Matter; 2023 Jun; 35(37):. PubMed ID: 37279725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reentrant spin-glass behaviour in highly frustrated Mn-rich spinel zinc manganate.
    Rajeesh Kumar N; Karthik R; Vasylechko L; Kalai Selvan R
    J Phys Condens Matter; 2020 Jun; 32(24):245802. PubMed ID: 32186282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Spin-Liquid State in an Organic Hyperkagome Lattice of Mott Dimers.
    Mizuno A; Shuku Y; Matsushita MM; Tsuchiizu M; Hara Y; Wada N; Shimizu Y; Awaga K
    Phys Rev Lett; 2017 Aug; 119(5):057201. PubMed ID: 28949754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Range Mass Transport during Structural Transitions in Metallic Glass-Forming Melts.
    Jonas I; Yang F; Meyer A
    Phys Rev Lett; 2019 Aug; 123(5):055502. PubMed ID: 31491331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High temperature spin-glass-like transition in La
    Lu R; Yang S; Li Y; Chen K; Jiang Y; Fu B; Zhang Y; Zhou C; Xu M; Zhou X
    Phys Chem Chem Phys; 2017 Jun; 19(25):16731-16736. PubMed ID: 28621772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-particle dynamics near the glass transition of a metallic glass.
    Lü YJ; Wang WH
    Phys Rev E; 2016 Dec; 94(6-1):062611. PubMed ID: 28085459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiferromagnetic short-range order and cluster spin-glass state in diluted spinel ZnTiCoO
    Chowdhury MR; Seehra MS; Pramanik P; Ghosh S; Sarkar T; Weise B; Thota S
    J Phys Condens Matter; 2022 May; 34(27):. PubMed ID: 35439746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground-State Spin Dynamics in
    Jiang N; Zhou J; Hao XL; Li J; Zhang D; Bacsa J; Choi ES; Ramanathan A; Baumbach RE; Li H; Brédas JL; Han Y; La Pierre HS
    J Am Chem Soc; 2023 Jan; 145(1):207-215. PubMed ID: 36534963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LiZn
    Kundu S; Dey T; Mahajan AV; Büttgen N
    J Phys Condens Matter; 2020 Mar; 32(11):115601. PubMed ID: 31746785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the structural stability and spin-glass behavior in α-MnO
    Liu X; Xie Y; Hu Z; Lin HJ; Chen CT; Dong L; Zhang Y; Wang Q; Luo SH
    Phys Chem Chem Phys; 2022 May; 24(20):12300-12310. PubMed ID: 35545001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.