These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31819112)

  • 1. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria.
    Batani G; Bayer K; Böge J; Hentschel U; Thomas T
    Sci Rep; 2019 Dec; 9(1):18618. PubMed ID: 31819112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations.
    Yilmaz S; Haroon MF; Rabkin BA; Tyson GW; Hugenholtz P
    ISME J; 2010 Oct; 4(10):1352-6. PubMed ID: 20505753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the environmental specificity of Fluorescence In Situ Hybridization (FISH) using Fluorescence-Activated Cell Sorting (FACS) of probe (PSE1284)-positive cells extracted from rhizosphere soil.
    Gougoulias C; Shaw LJ
    Syst Appl Microbiol; 2012 Dec; 35(8):533-40. PubMed ID: 22264503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow sorting of marine bacterioplankton after fluorescence in situ hybridization.
    Sekar R; Fuchs BM; Amann R; Pernthaler J
    Appl Environ Microbiol; 2004 Oct; 70(10):6210-9. PubMed ID: 15466568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primer-free FISH probes from metagenomics/metatranscriptomics data permit the study of uncharacterised taxa in complex microbial communities.
    Tan SM; Yung PYM; Hutchinson PE; Xie C; Teo GH; Ismail MH; Drautz-Moses DI; Little PFR; Williams RBH; Cohen Y
    NPJ Biofilms Microbiomes; 2019; 5(1):17. PubMed ID: 31263569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach to increase the success rate of cultivation of soil bacteria based on fluorescence-activated cell sorting.
    Espina L
    PLoS One; 2020; 15(8):e0237748. PubMed ID: 32866195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pipeline for targeted metagenomics of environmental bacteria.
    Grieb A; Bowers RM; Oggerin M; Goudeau D; Lee J; Malmstrom RR; Woyke T; Fuchs BM
    Microbiome; 2020 Feb; 8(1):21. PubMed ID: 32061258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH.
    Hoshino T; Yilmaz LS; Noguera DR; Daims H; Wagner M
    Appl Environ Microbiol; 2008 Aug; 74(16):5068-77. PubMed ID: 18552182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.
    Bruder LM; Dörkes M; Fuchs BM; Ludwig W; Liebl W
    Syst Appl Microbiol; 2016 Oct; 39(7):464-475. PubMed ID: 27665238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria.
    Mobarry BK; Wagner M; Urbain V; Rittmann BE; Stahl DA
    Appl Environ Microbiol; 1996 Jun; 62(6):2156-62. PubMed ID: 8787412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes.
    Li M; Yang Y; He Y; Mathieu J; Yu C; Li Q; Alvarez PJJ
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3375-3386. PubMed ID: 29464325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization.
    Mikš-Krajnik M; Babuchowski A
    Lett Appl Microbiol; 2014 Sep; 59(3):320-7. PubMed ID: 24814284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence in situ hybridization for the identification of environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe.
    Christensen H; Hansen M; Sorensen J
    Appl Environ Microbiol; 1999 Apr; 65(4):1753-61. PubMed ID: 10103277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of bacteria of the Clostridium leptum subgroup from the human colonic microbiota by fluorescence-activated cell sorting or group-specific PCR using 16S rRNA gene oligonucleotides.
    Lay C; Doré J; Rigottier-Gois L
    FEMS Microbiol Ecol; 2007 Jun; 60(3):513-20. PubMed ID: 17428302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Detection of representatives of the Planctomycetes in Sphagnum peat bogs by molecular and cultivation methods].
    Kulichevskaia IS; Pankratov TA; Dedysh SN
    Mikrobiologiia; 2006; 75(3):389-96. PubMed ID: 16871807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of recognition of individual genes-fluorescence in situ hybridization (RING-FISH) to detect nitrite reductase genes (nirK) of denitrifiers in pure cultures and environmental samples.
    Pratscher J; Stichternoth C; Fichtl K; Schleifer KH; Braker G
    Appl Environ Microbiol; 2009 Feb; 75(3):802-10. PubMed ID: 19074610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge.
    Snaidr J; Fuchs B; Wallner G; Wagner M; Schleifer KH; Amann R
    Environ Microbiol; 1999 Apr; 1(2):125-35. PubMed ID: 11207728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions.
    Valle ER; Henderson G; Janssen PH; Cox F; Alexander TW; McAllister TA
    Can J Microbiol; 2015 Jun; 61(6):417-28. PubMed ID: 25924182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.