BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 31819217)

  • 1. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity.
    Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC
    Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection.
    Mayo-Muñoz D; Smith LM; Garcia-Doval C; Malone LM; Harding KR; Jackson SA; Hampton HG; Fagerlund RD; Gumy LF; Fineran PC
    Mol Cell; 2022 Dec; 82(23):4471-4486.e9. PubMed ID: 36395770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.
    Goldberg GW; Jiang W; Bikard D; Marraffini LA
    Nature; 2014 Oct; 514(7524):633-7. PubMed ID: 25174707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases.
    Mendoza SD; Nieweglowska ES; Govindarajan S; Leon LM; Berry JD; Tiwari A; Chaikeeratisak V; Pogliano J; Agard DA; Bondy-Denomy J
    Nature; 2020 Jan; 577(7789):244-248. PubMed ID: 31819262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.
    Silas S; Lucas-Elio P; Jackson SA; Aroca-Crevillén A; Hansen LL; Fineran PC; Fire AZ; Sánchez-Amat A
    Elife; 2017 Aug; 6():. PubMed ID: 28826484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular Organization by Jumbo Bacteriophages.
    Guan J; Bondy-Denomy J
    J Bacteriol; 2020 Dec; 203(2):. PubMed ID: 32868402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.
    Meeske AJ; Nakandakari-Higa S; Marraffini LA
    Nature; 2019 Jun; 570(7760):241-245. PubMed ID: 31142834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition.
    Kazlauskiene M; Tamulaitis G; Kostiuk G; Venclovas Č; Siksnys V
    Mol Cell; 2016 Apr; 62(2):295-306. PubMed ID: 27105119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rcs stress response inversely controls surface and CRISPR-Cas adaptive immunity to discriminate plasmids and phages.
    Smith LM; Jackson SA; Malone LM; Ussher JE; Gardner PP; Fineran PC
    Nat Microbiol; 2021 Feb; 6(2):162-172. PubMed ID: 33398095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Jumbo Phage Forms a Nucleus-like Compartment to Evade Bacterial Defense Systems.
    Modell AE; Siriwardena SU; Choudhary A
    Biochemistry; 2020 May; 59(20):1869-1870. PubMed ID: 32403926
    [No Abstract]   [Full Text] [Related]  

  • 14. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress.
    Malone LM; Hampton HG; Morgan XC; Fineran PC
    Nucleic Acids Res; 2022 Jan; 50(1):160-174. PubMed ID: 34928385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conquering CRISPR: how phages overcome bacterial adaptive immunity.
    Malone LM; Birkholz N; Fineran PC
    Curr Opin Biotechnol; 2021 Apr; 68():30-36. PubMed ID: 33113496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
    Bondy-Denomy J; Garcia B; Strum S; Du M; Rollins MF; Hidalgo-Reyes Y; Wiedenheft B; Maxwell KL; Davidson AR
    Nature; 2015 Oct; 526(7571):136-9. PubMed ID: 26416740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance.
    Dupuis MÈ; Villion M; Magadán AH; Moineau S
    Nat Commun; 2013; 4():2087. PubMed ID: 23820428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs.
    Borges AL; Davidson AR; Bondy-Denomy J
    Annu Rev Virol; 2017 Sep; 4(1):37-59. PubMed ID: 28749735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phage nucleus-associated RNA-binding protein is required for jumbo phage infection.
    Enustun E; Armbruster EG; Lee J; Zhang S; Yee BA; Malukhina K; Gu Y; Deep A; Naritomi JT; Liang Q; Aigner S; Adler BA; Cress BF; Doudna JA; Chaikeeratisak V; Cleveland DW; Ghassemian M; Bintu B; Yeo GW; Pogliano J; Corbett KD
    Nucleic Acids Res; 2024 May; 52(8):4440-4455. PubMed ID: 38554115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.