These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31819237)

  • 1. Co-option of wing-patterning genes underlies the evolution of the treehopper helmet.
    Fisher CR; Wegrzyn JL; Jockusch EL
    Nat Ecol Evol; 2020 Feb; 4(2):250-260. PubMed ID: 31819237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of growth regulation and appendage patterning genes in the morphogenesis of treehopper pronota.
    Kudla AM; Miranda X; Nijhout HF
    Proc Biol Sci; 2022 Jun; 289(1976):20212682. PubMed ID: 35673859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body plan innovation in treehoppers through the evolution of an extra wing-like appendage.
    Prud'homme B; Minervino C; Hocine M; Cande JD; Aouane A; Dufour HD; Kassner VA; Gompel N
    Nature; 2011 May; 473(7345):83-6. PubMed ID: 21544145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On dorsal prothoracic appendages in treehoppers (Hemiptera: Membracidae) and the nature of morphological evidence.
    Mikó I; Friedrich F; Yoder MJ; Hines HM; Deitz LL; Bertone MA; Seltmann KC; Wallace MS; Deans AR
    PLoS One; 2012; 7(1):e30137. PubMed ID: 22272287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in
    Linz DM; Tomoyasu Y
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):E658-E667. PubMed ID: 29317537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles.
    Hu Y; Moczek AP
    Proc Biol Sci; 2021 Jan; 288(1943):20202828. PubMed ID: 33467999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods.
    Fisher CR; Kratovil JD; Angelini DR; Jockusch EL
    Proc Biol Sci; 2021 Dec; 288(1965):20211808. PubMed ID: 34933597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological Observation of Helmet Development in the Treehopper
    Sugiura K; Terano T; Adachi H; Hagiwara J; Matsuda K; Nishida K; Hanson P; Kondo S; Gotoh H
    Zoolog Sci; 2024 Apr; 41(2):167-176. PubMed ID: 38587911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and development of the complex helmet of treehoppers (Insecta: Hemiptera: Membracidae).
    Adachi H; Matsuda K; Nishida K; Hanson P; Kondo S; Gotoh H
    Zoological Lett; 2020; 6():3. PubMed ID: 32123574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?
    Jiggins CD; Wallbank RW; Hanly JJ
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings.
    Clark-Hachtel CM; Tomoyasu Y
    Nat Ecol Evol; 2020 Dec; 4(12):1694-1702. PubMed ID: 32747770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tergal and pleural wing-related tissues in the German cockroach and their implication to the evolutionary origin of insect wings.
    Clark-Hachtel C; Fernandez-Nicolas A; Belles X; Tomoyasu Y
    Evol Dev; 2021 Mar; 23(2):100-116. PubMed ID: 33503322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed analysis of the prothoracic tissues transforming into wings in the Cephalothorax mutants of the Tribolium beetle.
    Clark-Hachtel CM; Moe MR; Tomoyasu Y
    Arthropod Struct Dev; 2018 Jul; 47(4):352-361. PubMed ID: 29913217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenetic trajectories and early shape differentiation of treehopper pronota (Hemiptera: Membracidae).
    Kudla AM; Miranda X; Frederik Nijhout H
    Evol Dev; 2023 May; 25(3):240-252. PubMed ID: 37035938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the origin of insect wings from an evo-devo perspective.
    Clark-Hachtel CM; Tomoyasu Y
    Curr Opin Insect Sci; 2016 Feb; 13():77-85. PubMed ID: 27436556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jumping mechanisms in gum treehopper insects (Hemiptera, Eurymelinae).
    Burrows M
    J Exp Biol; 2013 Jul; 216(Pt 14):2682-90. PubMed ID: 23619401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What serial homologs can tell us about the origin of insect wings.
    Tomoyasu Y; Ohde T; Clark-Hachtel C
    F1000Res; 2017; 6():268. PubMed ID: 28357056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into insect wing origin provided by functional analysis of vestigial in the red flour beetle, Tribolium castaneum.
    Clark-Hachtel CM; Linz DM; Tomoyasu Y
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16951-6. PubMed ID: 24085843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beetle horns evolved from wing serial homologs.
    Hu Y; Linz DM; Moczek AP
    Science; 2019 Nov; 366(6468):1004-1007. PubMed ID: 31754001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution.
    Martin A; Reed RD
    Mol Biol Evol; 2010 Dec; 27(12):2864-78. PubMed ID: 20624848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.