These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31819237)

  • 21. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait.
    Shirai LT; Saenko SV; Keller RA; Jerónimo MA; Brakefield PM; Descimon H; Wahlberg N; Beldade P
    BMC Evol Biol; 2012 Feb; 12():21. PubMed ID: 22335999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abdominal serial homologues of wings in Paleozoic insects.
    Prokop J; Rosová K; Krzemińska E; Krzemiński W; Nel A; Engel MS
    Curr Biol; 2022 Aug; 32(15):3414-3422.e1. PubMed ID: 35772407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary origin of insect wings from ancestral gills.
    Averof M; Cohen SM
    Nature; 1997 Feb; 385(6617):627-30. PubMed ID: 9024659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative models for the evolution of eyespots and of serial homology on lepidopteran wings.
    Monteiro A
    Bioessays; 2008 Apr; 30(4):358-66. PubMed ID: 18348192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Butterfly wing colours are driven by the evolution of developmental heterochrony. Butterfly wing colours and patterning by numbers.
    ffrench-Constant RH
    Heredity (Edinb); 2012 Jun; 108(6):592-3. PubMed ID: 22378359
    [No Abstract]   [Full Text] [Related]  

  • 26. The Daphnia carapace and other novel structures evolved via the cryptic persistence of serial homologs.
    Bruce HS; Patel NH
    Curr Biol; 2022 Sep; 32(17):3792-3799.e3. PubMed ID: 35858617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Butterfly eyespot patterns and how evolutionary tinkering yields diversity.
    Brakefield PM
    Novartis Found Symp; 2007; 284():90-101; discussion 101-15. PubMed ID: 17710849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypothesis testing in evolutionary developmental biology: a case study from insect wings.
    Jockusch EL; Ober KA
    J Hered; 2004; 95(5):382-96. PubMed ID: 15388766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome Profiling of Neurosensory Perception Genes in Wing Tissue of Two Evolutionary Distant Insect Orders: Diptera (Drosophila melanogaster) and Hemiptera (Acyrthosiphon pisum).
    Agnel S; da Rocha M; Robichon A
    J Mol Evol; 2017 Dec; 85(5-6):234-245. PubMed ID: 29075833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin and diversification of wings: Insights from a neopteran insect.
    Medved V; Marden JH; Fescemyer HW; Der JP; Liu J; Mahfooz N; Popadić A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15946-51. PubMed ID: 26668365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating evolutionarily novel horns within the deeply conserved insect head.
    Linz DM; Moczek AP
    BMC Biol; 2020 Apr; 18(1):41. PubMed ID: 32312271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deconstructing the long-standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence.
    Siomava N; Fuentes JSM; Diogo R
    J Morphol; 2020 Sep; 281(9):1110-1132. PubMed ID: 32757228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evolution of patterning of serially homologous appendages in insects.
    Jockusch EL; Williams TA; Nagy LM
    Dev Genes Evol; 2004 Jul; 214(7):324-38. PubMed ID: 15170569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-option of an Ancestral Hox-Regulated Network Underlies a Recently Evolved Morphological Novelty.
    Glassford WJ; Johnson WC; Dall NR; Smith SJ; Liu Y; Boll W; Noll M; Rebeiz M
    Dev Cell; 2015 Sep; 34(5):520-31. PubMed ID: 26343453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures.
    Tomoyasu Y
    Curr Opin Genet Dev; 2021 Aug; 69():48-55. PubMed ID: 33647834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Convergent, modular expression of ebony and tan in the mimetic wing patterns of Heliconius butterflies.
    Ferguson LC; Maroja L; Jiggins CD
    Dev Genes Evol; 2011 Dec; 221(5-6):297-308. PubMed ID: 22139062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From descent with modification to the origins of novelty.
    Linz DM; Hu Y; Moczek AP
    Zoology (Jena); 2020 Dec; 143():125836. PubMed ID: 32911265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative developmental analysis of Drosophila and Tribolium reveals conserved and diverged roles of abrupt in insect wing evolution.
    Ravisankar P; Lai YT; Sambrani N; Tomoyasu Y
    Dev Biol; 2016 Jan; 409(2):518-29. PubMed ID: 26687509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution.
    Lemons D; Fritzenwanker JH; Gerhart J; Lowe CJ; McGinnis W
    Dev Biol; 2010 Aug; 344(1):358-62. PubMed ID: 20435033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.
    Prokop J; Pecharová M; Nel A; Hörnschemeyer T; Krzemińska E; Krzemiński W; Engel MS
    Curr Biol; 2017 Jan; 27(2):263-269. PubMed ID: 28089512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.