BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31819419)

  • 1. Functional Autophagic Flux Regulates AgNP Uptake And The Internalized Nanoparticles Determine Tumor Cell Fate By Temporally Regulating Flux.
    Fageria L; Bambroo V; Mathew A; Mukherjee S; Chowdhury R; Pande S
    Int J Nanomedicine; 2019; 14():9063-9076. PubMed ID: 31819419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interrupted effect of autophagic flux and lysosomal function induced by graphene oxide in p62-dependent apoptosis of F98 cells.
    Zhang C; Feng X; He L; Zhang Y; Shao L
    J Nanobiotechnology; 2020 Mar; 18(1):52. PubMed ID: 32188458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment.
    Elmetwalli A; Abdel-Monem MO; El-Far AH; Ghaith GS; Albalawi NAN; Hassan J; Ismail NF; El-Sewedy T; Alnamshan MM; ALaqeel NK; Al-Dhuayan IS; Hassan MG
    Med Oncol; 2024 Apr; 41(5):106. PubMed ID: 38575697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells.
    Zhang J; Qin X; Wang B; Xu G; Qin Z; Wang J; Wu L; Ju X; Bose DD; Qiu F; Zhou H; Zou Z
    Cell Death Dis; 2017 Jul; 8(7):e2954. PubMed ID: 28749469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways.
    Zhu B; Li Y; Lin Z; Zhao M; Xu T; Wang C; Deng N
    Nanoscale Res Lett; 2016 Dec; 11(1):198. PubMed ID: 27075340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the cellular antioxidant mechanism against cytotoxic silver nanoparticles: a Raman spectroscopic analysis.
    Redolfi-Bristol D; Yamamoto K; Marin E; Zhu W; Mazda O; Riello P; Pezzotti G
    Nanoscale; 2024 May; 16(20):9985-9997. PubMed ID: 38695726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Silver Nanoparticle Uptake by Embryonic Zebrafish Cells.
    Quevedo AC; Ellis LA; Lynch I; Valsami-Jones E
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells.
    Choi YJ; Park JH; Han JW; Kim E; Jae-Wook O; Lee SY; Kim JH; Gurunathan S
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27973444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver Nanoparticles: Two-Faced Neuronal Differentiation-Inducing Material in Neuroblastoma (SH-SY5Y) Cells.
    Abdal Dayem A; Lee SB; Choi HY; Cho SG
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29762523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles.
    Mohammadinejad R; Moosavi MA; Tavakol S; Vardar DÖ; Hosseini A; Rahmati M; Dini L; Hussain S; Mandegary A; Klionsky DJ
    Autophagy; 2019 Jan; 15(1):4-33. PubMed ID: 30160607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages.
    de Luna LA; de Moraes AC; Consonni SR; Pereira CD; Cadore S; Giorgio S; Alves OL
    J Nanobiotechnology; 2016 Feb; 14():12. PubMed ID: 26912341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of brain conductivity and permittivity and neurotransmitters induced by citrate-coated silver nanoparticles in male rats.
    Attia A; Ramadan H; ElMazoudy R; Abdelnaser A
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):38332-38347. PubMed ID: 33733404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential cytotoxicity of silver nanoparticles: Stimulation of autophagy and mitochondrial dysfunction in cardiac cells.
    Khan AA; Alanazi AM; Alsaif N; Al-Anazi M; Sayed AYA; Bhat MA
    Saudi J Biol Sci; 2021 May; 28(5):2762-2771. PubMed ID: 34025162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H
    Musino D; Rivard C; Novales B; Landrot G; Capron I
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32784401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotubes, but not spherical nanoparticles, block autophagy by a shape-related targeting of lysosomes in murine macrophages.
    Cohignac V; Landry MJ; Ridoux A; Pinault M; Annangi B; Gerdil A; Herlin-Boime N; Mayne M; Haruta M; Codogno P; Boczkowski J; Pairon JC; Lanone S
    Autophagy; 2018; 14(8):1323-1334. PubMed ID: 29938576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model.
    Wang X; Wang WX
    ACS Nano; 2024 May; 18(20):13308-13321. PubMed ID: 38716827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoparticles induce formation of multi-protein aggregates that contain cadherin but do not colocalize with nanoparticles.
    Thomas KM; Spitzer N
    Toxicol In Vitro; 2024 Jun; 98():105837. PubMed ID: 38692336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted silver nanoparticles for ratiometric cell phenotyping.
    Willmore AM; Simón-Gracia L; Toome K; Paiste P; Kotamraju VR; Mölder T; Sugahara KN; Ruoslahti E; Braun GB; Teesalu T
    Nanoscale; 2016 Apr; 8(17):9096-101. PubMed ID: 26646247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysosome passivation triggered by silver nanoparticles enhances subcellular-targeted drug therapy.
    Wang X; Zhao S; Fang G; Wang R; Lyu X; Shao X; Ling P; Meng C; Chen J; Mu Y
    Nanoscale; 2024 May; 16(17):8597-8606. PubMed ID: 38602353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticle-induced cell damage via impaired mtROS-JNK/MnSOD signaling pathway.
    Piao MJ; Kang KA; Fernando PDSM; Herath HMUL; Hyun JW
    Toxicol Mech Methods; 2024 May; ():1-10. PubMed ID: 38736318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.