BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 31819944)

  • 1. 3D genome organization during lymphocyte development and activation.
    van Schoonhoven A; Huylebroeck D; Hendriks RW; Stadhouders R
    Brief Funct Genomics; 2020 Mar; 19(2):71-82. PubMed ID: 31819944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Interplay Between Chromatin Architecture and Lineage-Specific Transcription Factors and the Regulation of
    Miyazaki K; Miyazaki M
    Front Immunol; 2021; 12():659761. PubMed ID: 33796120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organizational principles of 3D genome architecture.
    Rowley MJ; Corces VG
    Nat Rev Genet; 2018 Dec; 19(12):789-800. PubMed ID: 30367165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.
    Cardozo Gizzi AM; Cattoni DI; Fiche JB; Espinola SM; Gurgo J; Messina O; Houbron C; Ogiyama Y; Papadopoulos GL; Cavalli G; Lagha M; Nollmann M
    Mol Cell; 2019 Apr; 74(1):212-222.e5. PubMed ID: 30795893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Chromatin Structure Changes During Adipogenesis and Myogenesis.
    He M; Li Y; Tang Q; Li D; Jin L; Tian S; Che T; He S; Deng L; Gao G; Gu Y; Jiang Z; Li X; Li M
    Int J Biol Sci; 2018; 14(11):1571-1585. PubMed ID: 30263009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Interplay between Transcription Factors and the 3D Genome.
    Kim S; Shendure J
    Mol Cell; 2019 Oct; 76(2):306-319. PubMed ID: 31521504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation associated modules reflect 3D genome modularity associated with chromatin activity.
    Zheng L; Wang W
    Nat Commun; 2022 Sep; 13(1):5281. PubMed ID: 36075900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-level remodelling of chromatin underlying activation of human T cells.
    Bediaga NG; Coughlan HD; Johanson TM; Garnham AL; Naselli G; Schröder J; Fearnley LG; Bandala-Sanchez E; Allan RS; Smyth GK; Harrison LC
    Sci Rep; 2021 Jan; 11(1):528. PubMed ID: 33436846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of genome folding into topologically associating domains.
    Szabo Q; Bantignies F; Cavalli G
    Sci Adv; 2019 Apr; 5(4):eaaw1668. PubMed ID: 30989119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer physics predicts the effects of structural variants on chromatin architecture.
    Bianco S; Lupiáñez DG; Chiariello AM; Annunziatella C; Kraft K; Schöpflin R; Wittler L; Andrey G; Vingron M; Pombo A; Mundlos S; Nicodemi M
    Nat Genet; 2018 May; 50(5):662-667. PubMed ID: 29662163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization.
    Ulianov SV; Tachibana-Konwalski K; Razin SV
    Bioessays; 2017 Oct; 39(10):. PubMed ID: 28792605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism of the 3D genome structure and function regulation during cell terminal differentiation.
    Yang K; Xue Z; Lv X
    Yi Chuan; 2020 Jan; 42(1):32-44. PubMed ID: 31956095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Chromatin Imaging at Kilobase-Scale Resolution.
    Boettiger A; Murphy S
    Trends Genet; 2020 Apr; 36(4):273-287. PubMed ID: 32007290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear compartments, genome folding, and enhancer-promoter communication.
    Ulianov SV; Gavrilov AA; Razin SV
    Int Rev Cell Mol Biol; 2015; 315():183-244. PubMed ID: 25708464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin topology in development and disease.
    Bompadre O; Andrey G
    Curr Opin Genet Dev; 2019 Apr; 55():32-38. PubMed ID: 31125724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation.
    Vilarrasa-Blasi R; Soler-Vila P; Verdaguer-Dot N; Russiñol N; Di Stefano M; Chapaprieta V; Clot G; Farabella I; Cuscó P; Kulis M; Agirre X; Prosper F; Beekman R; Beà S; Colomer D; Stunnenberg HG; Gut I; Campo E; Marti-Renom MA; Martin-Subero JI
    Nat Commun; 2021 Jan; 12(1):651. PubMed ID: 33510161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interplay of epigenetic marks during stem cell differentiation and development.
    Atlasi Y; Stunnenberg HG
    Nat Rev Genet; 2017 Nov; 18(11):643-658. PubMed ID: 28804139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.