BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31820438)

  • 1. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus.
    Streeter KA; Sunshine MD; Brant JO; Sandoval AGW; Maden M; Fuller DD
    J Comp Neurol; 2020 Jun; 528(9):1535-1547. PubMed ID: 31820438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the effects of two therapeutic strategies based on olfactory ensheathing cell transplantation and repetitive magnetic stimulation after spinal cord injury in female mice.
    Delarue Q; Robac A; Massardier R; Marie JP; Guérout N
    J Neurosci Res; 2021 Jul; 99(7):1835-1849. PubMed ID: 33960512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection.
    Nogueira-Rodrigues J; Leite SC; Pinto-Costa R; Sousa SC; Luz LL; Sintra MA; Oliveira R; Monteiro AC; Pinheiro GG; Vitorino M; Silva JA; Simão S; Fernandes VE; Provazník J; Benes V; Cruz CD; Safronov BV; Magalhães A; Reis CA; Vieira J; Vieira CP; Tiscórnia G; Araújo IM; Sousa MM
    Dev Cell; 2022 Feb; 57(4):440-450.e7. PubMed ID: 34986324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal skin regeneration after full thickness thermal burn injury in the spiny mouse, Acomys cahirinus.
    Maden M
    Burns; 2018 Sep; 44(6):1509-1520. PubMed ID: 29903601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Proteomic Analysis in Scar-Free Skin Regeneration in Acomys cahirinus and Scarring Mus musculus.
    Yoon JH; Cho K; Garrett TJ; Finch P; Maden M
    Sci Rep; 2020 Jan; 10(1):166. PubMed ID: 31932597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model systems for regeneration: the spiny mouse,
    Maden M; Varholick JA
    Development; 2020 Feb; 147(4):. PubMed ID: 32098790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptomic analysis of dermal wound healing reveals de novo skeletal muscle regeneration in Acomys cahirinus.
    Brant JO; Boatwright JL; Davenport R; Sandoval AGW; Maden M; Barbazuk WB
    PLoS One; 2019; 14(5):e0216228. PubMed ID: 31141508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ependymal cell cytoskeleton in the normal and injured spinal cord of mice.
    Trujillo-Cenóz O; Rehermann MI; Maciel C; Falco MV; Fabbiani G; Russo RE
    J Neurosci Res; 2021 Oct; 99(10):2592-2609. PubMed ID: 34288039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of Acomys cahirinus and Mus musculus responses to genotoxicity, oxidative stress, and inflammation.
    Ghebryal LN; Noshy MM; El-Ghor AA; Eissa SM
    Sci Rep; 2023 Mar; 13(1):3989. PubMed ID: 36894692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys.
    Brant JO; Lopez MC; Baker HV; Barbazuk WB; Maden M
    PLoS One; 2015; 10(11):e0142931. PubMed ID: 26606282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional heart recovery in an adult mammal, the spiny mouse.
    Qi Y; Dasa O; Maden M; Vohra R; Batra A; Walter G; Yarrow JF; Aranda JM; Raizada MK; Pepine CJ
    Int J Cardiol; 2021 Sep; 338():196-203. PubMed ID: 34126132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo transcriptome assembly for the spiny mouse (Acomys cahirinus).
    Mamrot J; Legaie R; Ellery SJ; Wilson T; Seemann T; Powell DR; Gardner DK; Walker DW; Temple-Smith P; Papenfuss AT; Dickinson H
    Sci Rep; 2017 Aug; 7(1):8996. PubMed ID: 28827620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration-Competent and -Incompetent Murids Differ in Neutrophil Quantity and Function.
    Cyr JL; Gawriluk TR; Kimani JM; Rada B; Watford WT; Kiama SG; Seifert AW; Ezenwa VO
    Integr Comp Biol; 2019 Nov; 59(5):1138-1149. PubMed ID: 30989211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin.
    Jiang TX; Harn HI; Ou KL; Lei M; Chuong CM
    Exp Dermatol; 2019 Apr; 28(4):442-449. PubMed ID: 30734959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A potential entanglement between the spinal cord and hippocampus: Theta rhythm correlates with neurogenesis deficiency following spinal cord injury in male rats.
    Soltani Zangbar H; Ghadiri T; Vafaee MS; Ebrahimi Kalan A; Karimipour M; Fallahi S; Ghorbani M; Shahabi P
    J Neurosci Res; 2020 Dec; 98(12):2451-2467. PubMed ID: 32875652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coronal brain atlas in stereotaxic coordinates of the African spiny mouse, Acomys cahirinus.
    Vitorino M; Simão S; Moreira JB; Nogueira-Rodrigues J; Silva J; Lourenço AS; Fernandes V; Sousa MM; Tiscornia G; Araújo IM
    J Comp Neurol; 2022 Aug; 530(12):2215-2237. PubMed ID: 35434782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular events during scar-free skin regeneration in the spiny mouse, Acomys.
    Brant JO; Yoon JH; Polvadore T; Barbazuk WB; Maden M
    Wound Repair Regen; 2016; 24(1):75-88. PubMed ID: 26606280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.
    Herrmann JE; Shah RR; Chan AF; Zheng B
    Exp Neurol; 2010 Jun; 223(2):582-98. PubMed ID: 20170651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiny mice (Acomys cahirinus) do not respond to thymus-independent type 2 antigens.
    Pennello A; Taylor J; Matlack R; Karp J; Riggs J
    Dev Comp Immunol; 2006; 30(12):1181-90. PubMed ID: 16698082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.