These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31820450)

  • 1. Skeleton construction upon local regression of the sponge body.
    Kishimoto K; Sugano-Yasunaga W; Taniguchi A; Agata K; Nonaka S; Funayama N
    Dev Growth Differ; 2019 Dec; 61(9):485-500. PubMed ID: 31820450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Transport and Cementation of Skeletal Elements Build Up the Pole-and-Beam Structured Skeleton of Sponges.
    Nakayama S; Arima K; Kawai K; Mohri K; Inui C; Sugano W; Koba H; Tamada K; Nakata YJ; Kishimoto K; Arai-Shindo M; Kojima C; Matsumoto T; Fujimori T; Agata K; Funayama N
    Curr Biol; 2015 Oct; 25(19):2549-54. PubMed ID: 26387717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comments on a skeleton design paradigm for a demosponge.
    Aluma Y; Ilan M; Sherman D
    J Struct Biol; 2011 Sep; 175(3):415-24. PubMed ID: 21605685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The terminology of sponge spicules.
    Łukowiak M; Van Soest R; Klautau M; Pérez T; Pisera A; Tabachnick K
    J Morphol; 2022 Dec; 283(12):1517-1545. PubMed ID: 36208470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiculous skeleton formation in the freshwater sponge
    Bart MC; de Vet SJ; de Bakker DM; Alexander BE; van Oevelen D; van Loon EE; van Loon JJWA; de Goeij JM
    PeerJ; 2019; 6():e6055. PubMed ID: 30631642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Produce, carry/position, and connect: morphogenesis using rigid materials.
    Funayama N
    Curr Opin Genet Dev; 2019 Aug; 57():91-97. PubMed ID: 31546193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals.
    Sethmann I; Wörheide G
    Micron; 2008; 39(3):209-28. PubMed ID: 17360189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Siliceous spicules in marine demosponges (example Suberites domuncula).
    Müller WE; Belikov SI; Tremel W; Perry CC; Gieskes WW; Boreiko A; Schröder HC
    Micron; 2006; 37(2):107-20. PubMed ID: 16242342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis.
    Müller WE; Kaluzhnaya OV; Belikov SI; Rothenberger M; Schröder HC; Reiber A; Kaandorp JA; Manz B; Mietchen D; Volke F
    J Struct Biol; 2006 Jan; 153(1):31-41. PubMed ID: 16364658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic orientation and concentric layers in spicules of calcareous sponges.
    Rossi AL; Ribeiro B; Lemos M; Werckmann J; Borojevic R; Fromont J; Klautau M; Farina M
    J Struct Biol; 2016 Nov; 196(2):164-172. PubMed ID: 27090155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis.
    Mohri K; Nakatsukasa M; Masuda Y; Agata K; Funayama N
    Dev Dyn; 2008 Oct; 237(10):3024-39. PubMed ID: 18816843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unique invention of the siliceous sponges: their enzymatically made bio-silica skeleton.
    Müller WE; Wang X; Chen A; Hu S; Gan L; Schröder HC; Schloßmacher U; Wiens M
    Prog Mol Subcell Biol; 2011; 52():251-81. PubMed ID: 21877269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.
    Wang X; Schröder HC; Müller WE
    Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I. Biological and biochemical studies.
    Kaluzhnaya OV; Belikov SI; Schröder HC; Rothenberger M; Zapf S; Kaandorp JA; Borejko A; Müller IM; Müller WE
    Naturwissenschaften; 2005 Mar; 92(3):128-33. PubMed ID: 15655662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The caddisfly Ceraclea fulva and the freshwater sponge Ephydatia fluviatilis: a successful relationship.
    Corallini C; Gaino E
    Tissue Cell; 2003 Feb; 35(1):1-7. PubMed ID: 12589724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental factors related to the production of a complex set of spicules in a tropical freshwater sponge.
    Matteuzzo MC; Volkmer-Ribeiro C; Varajão AF; Varajão CA; Alexandre A; Guadagnin DL; Almeida AC
    An Acad Bras Cienc; 2015; 87(4):2013-29. PubMed ID: 26628027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Late Eocene siliceous sponge fauna of southern Australia: reconstruction based on loose spicules record.
    Łukowiak M
    Zootaxa; 2015 Feb; 3917():1-65. PubMed ID: 25662358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis.
    Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC
    J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.