These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31820639)

  • 21. Organogels Fabricated from Self-Assembled Nanotubes Containing Core Substituted Perylene Diimide Derivative.
    Moharana P; Santosh G
    ACS Omega; 2022 Jun; 7(25):21932-21938. PubMed ID: 35785309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic biomaterials: engineering organophosphate hydrolase to form self-assembling enzymatic hydrogels.
    Lu HD; Wheeldon IR; Banta S
    Protein Eng Des Sel; 2010 Jul; 23(7):559-66. PubMed ID: 20457694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aceclofenac organogels: in vitro and in vivo characterization.
    Shaikh IM; Jadhav SL; Jadhav KR; Kadam VJ; Pisal SS
    Curr Drug Deliv; 2009 Jan; 6(1):1-7. PubMed ID: 19418950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake and Release of Species from Carbohydrate Containing Organogels and Hydrogels.
    Pan A; Roy SG; Haldar U; Mahapatra RD; Harper GR; Low WL; De P; Hardy JG
    Gels; 2019 Sep; 5(4):. PubMed ID: 31575001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Re-Entrant Conformation Transition in Hydrogels.
    Okay O
    Gels; 2021 Jul; 7(3):. PubMed ID: 34287329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sol-gel polycondensation in a cyclohexane-based organogel system in helical silica: creation of both right- and left-handed silica structures by helical organogel fibers.
    Jung JH; Ono Y; Shinkai S
    Chemistry; 2000 Dec; 6(24):4552-7. PubMed ID: 11192088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering highly swellable dual-responsive protein-based injectable hydrogels: the effects of molecular structure and composition in vivo.
    Phan VHG; Thambi T; Kim BS; Huynh DP; Lee DS
    Biomater Sci; 2017 Oct; 5(11):2285-2294. PubMed ID: 29019478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complex Coacervate Core Micelles for the Dispersion and Stabilization of Organophosphate Hydrolase in Organic Solvents.
    Mills CE; Obermeyer A; Dong X; Walker J; Olsen BD
    Langmuir; 2016 Dec; 32(50):13367-13376. PubMed ID: 27993031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals.
    Zhu P; Yan X; Su Y; Yang Y; Li J
    Chemistry; 2010 Mar; 16(10):3176-83. PubMed ID: 20119986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water-induced physical gelation of organic solvents by N-(n-alkylcarbamoyl)-L-alanine amphiphiles.
    Pal A; Dey J
    Langmuir; 2011 Apr; 27(7):3401-8. PubMed ID: 21351761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme.
    Walker JP; Kimble KW; Asher SA
    Anal Bioanal Chem; 2007 Dec; 389(7-8):2115-24. PubMed ID: 17899031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system.
    Bao J; Hou C; Dong Q; Ma X; Chen J; Huo D; Yang M; Galil KHAE; Chen W; Lei Y
    Biosens Bioelectron; 2016 Nov; 85():935-942. PubMed ID: 27315519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organophosphorus hydrolase-poly-β-cyclodextrin as a stable self-decontaminating bio-catalytic material for sorption and degradation of organophosphate pesticide.
    Moon Y; Jafry AT; Bang Kang S; Young Seo J; Baek KY; Kim EJ; Pan JG; Choi JY; Kim HJ; Han Lee K; Jeong K; Bae SW; Shin S; Lee J; Lee Y
    J Hazard Mater; 2019 Mar; 365():261-269. PubMed ID: 30447633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-Factors Cooperatively Actuated Photonic Hydrogel Aptasensors for Facile, Label-Free and Colorimetric Detection of Lysozyme.
    Shen P; Shi Y; Li R; Han B; Ma H; Hou X; Zhang Y; Jiang L
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human Serum Phenylpyruvate Quantification Using Responsive 2D Photonic Crystal Hydrogels via Chemoselective Oxime Ligation: Progress toward Developing Phenylalanine-Sensing Elements.
    Jang K; Horne WS; Asher SA
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39612-39619. PubMed ID: 32805910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersion of single walled carbon nanotubes in organogels by incorporation into organogel fibers.
    Oh H; Jung BM; Lee HP; Chang JY
    J Colloid Interface Sci; 2010 Dec; 352(1):121-7. PubMed ID: 20817196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications.
    Esposito CL; Kirilov P; Roullin VG
    J Control Release; 2018 Feb; 271():1-20. PubMed ID: 29269143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel.
    Adhikari B; Nanda J; Banerjee A
    Chemistry; 2011 Oct; 17(41):11488-96. PubMed ID: 21953927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin.
    Varnier K; Vieira T; Wolf M; Belfiore LA; Tambourgi EB; Paulino AT
    Int J Biol Macromol; 2018 Dec; 120(Pt A):522-528. PubMed ID: 30165142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilization of organophosphate hydrolase on biocompatible gelatin pads and its use in removal of organophosphate compounds and nerve agents.
    Kanugula AK; Repalle ER; Pandey JP; Sripad G; Mitra CK; Dubey DK; Siddavattam D
    Indian J Biochem Biophys; 2011 Feb; 48(1):29-34. PubMed ID: 21469599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.