These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31820833)

  • 21. Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.
    Bein E; Deutsch J; Hong G; Porter KE; Qin X; Yang C
    Stat Med; 2018 Apr; 37(8):1304-1324. PubMed ID: 29322536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inverse probability weighting and doubly robust standardization in the relative survival framework.
    Syriopoulou E; Rutherford MJ; Lambert PC
    Stat Med; 2021 Nov; 40(27):6069-6092. PubMed ID: 34523751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are neighborhood health associations causal? A 10-year prospective cohort study with repeated measurements.
    Jokela M
    Am J Epidemiol; 2014 Oct; 180(8):776-84. PubMed ID: 25260937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Augmented and doubly robust G-estimation of causal effects under a Structural nested failure time model.
    Mertens K; Vansteelandt S
    Biometrics; 2018 Jun; 74(2):472-480. PubMed ID: 28742252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Value of Neighborhood Socioeconomic Status in Predicting Risk of Outcomes in Studies That Use Electronic Health Record Data.
    Bhavsar NA; Gao A; Phelan M; Pagidipati NJ; Goldstein BA
    JAMA Netw Open; 2018 Sep; 1(5):e182716. PubMed ID: 30646172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
    Tran L; Yiannoutsos C; Wools-Kaloustian K; Siika A; van der Laan M; Petersen M
    Int J Biostat; 2019 Feb; 15(2):. PubMed ID: 30811344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Causal inference for recurrent event data using pseudo-observations.
    Su CL; Platt RW; Plante JF
    Biostatistics; 2022 Jan; 23(1):189-206. PubMed ID: 32432686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doubly-robust methods for differences in restricted mean lifetimes using pseudo-observations.
    Choi S; Choi T; Lee HY; Han SW; Bandyopadhyay D
    Pharm Stat; 2022 Nov; 21(6):1185-1198. PubMed ID: 35524651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding and diagnosing the potential for bias when using machine learning methods with doubly robust causal estimators.
    Bahamyirou A; Blais L; Forget A; Schnitzer ME
    Stat Methods Med Res; 2019 Jun; 28(6):1637-1650. PubMed ID: 29717941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An evaluation of inverse probability weighting using the propensity score for baseline covariate adjustment in smaller population randomised controlled trials with a continuous outcome.
    Raad H; Cornelius V; Chan S; Williamson E; Cro S
    BMC Med Res Methodol; 2020 Mar; 20(1):70. PubMed ID: 32293286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning for Causal Inference: On the Use of Cross-fit Estimators.
    Zivich PN; Breskin A
    Epidemiology; 2021 May; 32(3):393-401. PubMed ID: 33591058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):131-55. PubMed ID: 27227720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A weighting method for simultaneous adjustment for confounding and joint exposure-outcome misclassifications.
    Penning de Vries BB; van Smeden M; Groenwold RH
    Stat Methods Med Res; 2021 Feb; 30(2):473-487. PubMed ID: 32998668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Causal effects of dietary calcium, zinc and iron intakes on coronary artery disease in men: G-estimation and inverse probability of treatment weighting (IPTW) analyses.
    Basnet TB; G C S; Basnet R; Neupane B; Thapa G
    Clin Nutr ESPEN; 2021 Apr; 42():73-81. PubMed ID: 33745624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Population intervention causal effects based on stochastic interventions.
    Muñoz ID; van der Laan M
    Biometrics; 2012 Jun; 68(2):541-9. PubMed ID: 21977966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiply robust estimation of causal quantile treatment effects.
    Xie Y; Cotton C; Zhu Y
    Stat Med; 2020 Dec; 39(28):4238-4251. PubMed ID: 32857876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Causal inference with noisy data: Bias analysis and estimation approaches to simultaneously addressing missingness and misclassification in binary outcomes.
    Shu D; Yi GY
    Stat Med; 2020 Feb; 39(4):456-468. PubMed ID: 31802532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating population treatment effects from a survey subsample.
    Rudolph KE; Díaz I; Rosenblum M; Stuart EA
    Am J Epidemiol; 2014 Oct; 180(7):737-48. PubMed ID: 25190679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating causal effects for multivalued treatments: a comparison of approaches.
    Linden A; Uysal SD; Ryan A; Adams JL
    Stat Med; 2016 Feb; 35(4):534-52. PubMed ID: 26482211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using generalized linear models to implement g-estimation for survival data with time-varying confounding.
    Seaman SR; Keogh RH; Dukes O; Vansteelandt S
    Stat Med; 2021 Jul; 40(16):3779-3790. PubMed ID: 33942919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.