BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31820915)

  • 1. Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles.
    Huang Y; Moini Jazani A; Howell EP; Oh JK; Moffitt MG
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):177-190. PubMed ID: 31820915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery.
    Huang Y; Jazani AM; Howell EP; Reynolds LA; Oh JK; Moffitt MG
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5069-5083. PubMed ID: 33455300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Structure and Function of Polymeric Drug Delivery Nanoparticles Using Microfluidics.
    Bains A; Cao Y; Kly S; Wulff JE; Moffitt MG
    Mol Pharm; 2017 Aug; 14(8):2595-2606. PubMed ID: 28520436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Processing Approach to Controlling Drug Delivery Properties of Curcumin-Loaded Block Copolymer Nanoparticles.
    Chen R; Wulff JE; Moffitt MG
    Mol Pharm; 2018 Oct; 15(10):4517-4528. PubMed ID: 30179485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Manufacturing of SN-38-Loaded Polymer Nanoparticles with Shear Processing Control of Drug Delivery Properties.
    Cao Y; Silverman L; Lu C; Hof R; Wulff JE; Moffitt MG
    Mol Pharm; 2019 Jan; 16(1):96-107. PubMed ID: 30477300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, Self-Assembly, and Drug Delivery Characteristics of Poly(methyl caprolactone-
    Xu Z; Lu C; Lindenberger C; Cao Y; Wulff JE; Moffitt MG
    ACS Omega; 2017 Aug; 2(8):5289-5303. PubMed ID: 30023746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chemical and processing variables on paclitaxel-loaded polymer nanoparticles prepared using microfluidics.
    Bains A; Moffitt MG
    J Colloid Interface Sci; 2017 Dec; 508():203-213. PubMed ID: 28841478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery.
    Hong SH; Patel T; Ip S; Garg S; Oh JK
    Langmuir; 2018 Mar; 34(10):3316-3325. PubMed ID: 29485889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic synthesis of dye-loaded polycaprolactone-block-poly(ethylene oxide) nanoparticles: Insights into flow-directed loading and in vitro release for drug delivery.
    Bains A; Wulff JE; Moffitt MG
    J Colloid Interface Sci; 2016 Aug; 475():136-148. PubMed ID: 27163840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems.
    Streck S; Hong L; Boyd BJ; McDowell A
    Pharm Nanotechnol; 2019; 7(6):423-443. PubMed ID: 31629401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-directed block copolymer micelle morphologies via microfluidic self-assembly.
    Wang CW; Sinton D; Moffitt MG
    J Am Chem Soc; 2011 Nov; 133(46):18853-64. PubMed ID: 21992654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic platform for controlled synthesis of polymeric nanoparticles.
    Karnik R; Gu F; Basto P; Cannizzaro C; Dean L; Kyei-Manu W; Langer R; Farokhzad OC
    Nano Lett; 2008 Sep; 8(9):2906-12. PubMed ID: 18656990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer.
    Wang L; Liu L; Dong B; Zhao H; Zhang M; Chen W; Hong Y
    Acta Biomater; 2017 May; 54():259-270. PubMed ID: 28286038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Location Dual Reduction/Photoresponsive Block Copolymer Micelles: Disassembly and Synergistic Release.
    Sun T; Li P; Oh JK
    Macromol Rapid Commun; 2015 Oct; 36(19):1742-8. PubMed ID: 26249829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation.
    Lallana E; Donno R; Magrì D; Barker K; Nazir Z; Treacher K; Lawrence MJ; Ashford M; Tirelli N
    Int J Pharm; 2018 Sep; 548(1):530-539. PubMed ID: 30009983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems.
    Maeki M; Kimura N; Sato Y; Harashima H; Tokeshi M
    Adv Drug Deliv Rev; 2018 Mar; 128():84-100. PubMed ID: 29567396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of continuous flow nanosphere formation by controlled microfluidic transport.
    Laulicht B; Cheifetz P; Mathiowitz E; Tripathi A
    Langmuir; 2008 Sep; 24(17):9717-26. PubMed ID: 18681411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Responsive Polymer Nanoparticles for Drug Delivery.
    Deirram N; Zhang C; Kermaniyan SS; Johnston APR; Such GK
    Macromol Rapid Commun; 2019 May; 40(10):e1800917. PubMed ID: 30835923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-step microfluidic synthesis of various nonspherical polymer nanoparticles via in situ assembling: dominating role of polyelectrolytes molecules.
    Visaveliya N; Köhler JM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11254-64. PubMed ID: 24953628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines.
    Liu D; Zhang H; Fontana F; Hirvonen JT; Santos HA
    Adv Drug Deliv Rev; 2018 Mar; 128():54-83. PubMed ID: 28801093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.