BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31820954)

  • 1. Peptidomic Investigation of the Interplay between Enzymatic Tenderization and the Digestibility of Beef Semimembranosus Proteins.
    Zhao D; Xu Y; Gu T; Wang H; Yin Y; Sheng B; Li Y; Nian Y; Wang C; Li C; Xu X; Zhou G
    J Agric Food Chem; 2020 Jan; 68(4):1136-1146. PubMed ID: 31820954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of proteolytic enzyme treatment on the changes in volatile compounds and odors of beef longissimus dorsi.
    Zhao D; Li H; Huang M; Wang T; Hu Y; Wang L; Xu D; Mao S; Li C; Zhou G
    Food Chem; 2020 Dec; 333():127549. PubMed ID: 32683266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanistic effect of bromelain and papain on tenderization in jumbo squid (Dosidicus gigas) muscle.
    Jun-Hui X; Hui-Juan C; Bin Z; Hui Y
    Food Res Int; 2020 May; 131():108991. PubMed ID: 32247462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidomics analysis of enzymatic hydrolysis beef.
    Qin D; Wang L; Fang R; Yu Z; Mo L; Liu M
    Food Sci Biotechnol; 2022 Sep; 31(10):1267-1275. PubMed ID: 35992321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism.
    Zhao GY; Zhou MY; Zhao HL; Chen XL; Xie BB; Zhang XY; He HL; Zhou BC; Zhang YZ
    Food Chem; 2012 Oct; 134(4):1738-44. PubMed ID: 23442615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed electric field: A new way to improve digestibility of cooked beef.
    Bhat ZF; Morton JD; Mason SL; Jayawardena SR; Bekhit AEA
    Meat Sci; 2019 Sep; 155():79-84. PubMed ID: 31085418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous proteases for meat tenderization.
    Bekhit AA; Hopkins DL; Geesink G; Bekhit AA; Franks P
    Crit Rev Food Sci Nutr; 2014; 54(8):1012-31. PubMed ID: 24499119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics in bovine semitendinosus muscle to assess emerging strategies based on papain injection and ultrasounds on meat tenderization process.
    Marino R; Della Malva A; Caroprese M; De Pilli T; Alessandrino O; Picariello G; Sevi A; Albenzio M
    Meat Sci; 2023 Jun; 200():109147. PubMed ID: 36848733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides.
    Sun Q; Chen F; Geng F; Luo Y; Gong S; Jiang Z
    Food Chem; 2018 Apr; 245():570-577. PubMed ID: 29287411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. At-home methods for tenderizing meat using blade tenderization, lime juice and pineapple puree.
    Lawrence MT; Lawrence TE
    Meat Sci; 2021 Jun; 176():108487. PubMed ID: 33714070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possibilities for developing texture-modified beef steaks suitable for older consumers using fruit-derived proteolytic enzymes.
    Botinestean C; Gomez C; Nian Y; Auty MAE; Kerry JP; Hamill RM
    J Texture Stud; 2018 Jun; 49(3):256-261. PubMed ID: 29068048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring molecular composition and digestibility of ripened bresaola through a combined foodomics approach.
    Picone G; De Noni I; Ferranti P; Nicolai MA; Alamprese C; Trimigno A; Brodkorb A; Portmann R; Pihlanto A; El SN; Capozzi F
    Food Res Int; 2019 Jan; 115():360-368. PubMed ID: 30599953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the proteolytic activities of new commercially available bacterial and fungal proteases toward meat proteins.
    Ha M; Bekhit Ael-D; Carne A; Hopkins DL
    J Food Sci; 2013 Feb; 78(2):C170-7. PubMed ID: 23323565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of beef tenderness and tenderization of beef by tenderay process.
    DEATHERAGE FE; REIMAN W
    Food Res; 1946; 11(6):525-34. PubMed ID: 20282539
    [No Abstract]   [Full Text] [Related]  

  • 15. Digestibility of glycated milk proteins and the peptidomics of their in vitro digests.
    Zhao D; Li L; Le TT; Larsen LB; Xu D; Jiao W; Sheng B; Li B; Zhang X
    J Sci Food Agric; 2019 Apr; 99(6):3069-3077. PubMed ID: 30511448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased protein digestibility of beef with aging in an infant in vitro digestion model.
    Lee S; Jo K; Lee HJ; Jo C; Yong HI; Choi YS; Jung S
    Meat Sci; 2020 Nov; 169():108210. PubMed ID: 32554316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To what extent does the nitrosation of meat proteins influence their digestibility?
    Théron L; Chambon C; Sayd T; De La Pomélie D; Santé-Lhoutellier V; Gatellier P
    Food Res Int; 2018 Nov; 113():175-182. PubMed ID: 30195510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Flammulina velutipes on spent-hen breast meat tenderization.
    Kang GH; Kim SH; Kim JH; Kang HK; Kim DW; Seong PN; Cho SH; Park BY; Kim DH
    Poult Sci; 2012 Jan; 91(1):232-6. PubMed ID: 22184449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real meat and plant-based meat analogues have different in vitro protein digestibility properties.
    Xie Y; Cai L; Zhao D; Liu H; Xu X; Zhou G; Li C
    Food Chem; 2022 Sep; 387():132917. PubMed ID: 35413556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Storage on Lactase-Treated β-Casein and β-Lactoglobulin with Respect to Bitter Peptide Formation and Subsequent in Vitro Digestibility.
    Zhao D; Le TT; Nielsen SD; Larsen LB
    J Agric Food Chem; 2017 Sep; 65(38):8409-8417. PubMed ID: 28885022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.