These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

643 related articles for article (PubMed ID: 31821359)

  • 21. In Vitro Assays for Comparing the Specificity of First- and Next-Generation CRISPR/Cas9 Systems.
    Cromwell CR; Hubbard BP
    Methods Mol Biol; 2021; 2162():215-232. PubMed ID: 32926385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique.
    Zhang B; Zhou J; Li M; Wei Y; Wang J; Wang Y; Shi P; Li X; Huang Z; Tang H; Song Z
    Anal Bioanal Chem; 2021 Apr; 413(9):2447-2456. PubMed ID: 33661348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
    Zhou H; Zhou M; Li D; Manthey J; Lioutikova E; Wang H; Zeng X
    BMC Genomics; 2017 Nov; 18(Suppl 9):826. PubMed ID: 29219081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core Hairpin Structure of SpCas9 sgRNA Functions in a Sequence- and Spatial Conformation-Dependent Manner.
    Jiang M; Ye Y; Li J
    SLAS Technol; 2021 Feb; 26(1):92-102. PubMed ID: 32486929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPRoff enables spatio-temporal control of CRISPR editing.
    Carlson-Stevermer J; Kelso R; Kadina A; Joshi S; Rossi N; Walker J; Stoner R; Maures T
    Nat Commun; 2020 Oct; 11(1):5041. PubMed ID: 33028827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review of CRISPR/Cas9 sgRNA Design Tools.
    Cui Y; Xu J; Cheng M; Liao X; Peng S
    Interdiscip Sci; 2018 Jun; 10(2):455-465. PubMed ID: 29644494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9.
    Tsui TKM; Hand TH; Duboy EC; Li H
    ACS Synth Biol; 2017 Jun; 6(6):1103-1113. PubMed ID: 28277645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.
    Gratz SJ; Ukken FP; Rubinstein CD; Thiede G; Donohue LK; Cummings AM; O'Connor-Giles KM
    Genetics; 2014 Apr; 196(4):961-71. PubMed ID: 24478335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system.
    Liu X; Homma A; Sayadi J; Yang S; Ohashi J; Takumi T
    Sci Rep; 2016 Jan; 6():19675. PubMed ID: 26813419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
    Tang YD; Guo JC; Wang TY; Zhao K; Liu JT; Gao JC; Tian ZJ; An TQ; Cai XH
    FASEB J; 2018 Aug; 32(8):4293-4301. PubMed ID: 29509513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing.
    Feng Y; Liu S; Chen R; Xie A
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pre-organized Guide RNA in the Cas9 Complex Is Ready for the Selection of Target Double-Stranded DNA.
    Kamiya Y; Asanuma H
    Chembiochem; 2015 Nov; 16(16):2273-5. PubMed ID: 26300258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pinpoint modification strategy for stabilization of single guide RNA.
    Takeuchi S; Yamamoto M; Matsumoto S; Kenjo E; Karashima M; Ikeda Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Mar; 1192():123149. PubMed ID: 35139474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites.
    Xie S; Shen B; Zhang C; Huang X; Zhang Y
    PLoS One; 2014; 9(6):e100448. PubMed ID: 24956386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing.
    Khromov AV; Gushchin VA; Timerbaev VI; Kalinina NO; Taliansky ME; Makarov VV
    Dokl Biochem Biophys; 2018 Mar; 479(1):90-94. PubMed ID: 29779105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci.
    Najah S; Saulnier C; Pernodet JL; Bury-Moné S
    BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR RNA Array-Guided Multisite Cleavage for Gene Disruption by Cas9 and Cpf1.
    Wang D; Ma D; Han J; Kong L; Li LY; Xi Z
    Chembiochem; 2018 Oct; 19(20):2195-2205. PubMed ID: 30088313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The length of guide RNA and target DNA heteroduplex effects on CRISPR/Cas9 mediated genome editing efficiency in porcine cells.
    Lv J; Wu S; Wei R; Li Y; Jin J; Mu Y; Zhang Y; Kong Q; Weng X; Liu Z
    J Vet Sci; 2019 May; 20(3):e23. PubMed ID: 31161741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Basis and Genome Editing Applications of a Compact
    Tang N; Wu Z; Gao Y; Chen W; Wang Z; Su M; Ji W; Ji Q
    ACS Synth Biol; 2024 Jan; 13(1):269-281. PubMed ID: 38061052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.