BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31821577)

  • 1. Incorporating human and learned domain knowledge into training deep neural networks: A differentiable dose-volume histogram and adversarial inspired framework for generating Pareto optimal dose distributions in radiation therapy.
    Nguyen D; McBeth R; Sadeghnejad Barkousaraie A; Bohara G; Shen C; Jia X; Jiang S
    Med Phys; 2020 Mar; 47(3):837-849. PubMed ID: 31821577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy.
    Bohara G; Sadeghnejad Barkousaraie A; Jiang S; Nguyen D
    Med Phys; 2020 Sep; 47(9):3898-3912. PubMed ID: 32621789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining dense elements with attention mechanisms for 3D radiotherapy dose prediction on head and neck cancers.
    Cros S; Bouttier H; Nguyen-Tan PF; Vorontsov E; Kadoury S
    J Appl Clin Med Phys; 2022 Aug; 23(8):e13655. PubMed ID: 35661390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A feasibility study on deep learning-based individualized 3D dose distribution prediction.
    Ma J; Nguyen D; Bai T; Folkerts M; Jia X; Lu W; Zhou L; Jiang S
    Med Phys; 2021 Aug; 48(8):4438-4447. PubMed ID: 34091925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-agnostic 3D dose distribution prediction with deep learning neural networks.
    Mashayekhi M; Tapia IR; Balagopal A; Zhong X; Barkousaraie AS; McBeth R; Lin MH; Jiang S; Nguyen D
    Med Phys; 2022 Mar; 49(3):1391-1406. PubMed ID: 35037276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of dose-volume histogram prediction for organ-at risk and planning target volume based on machine learning.
    Jiao SX; Wang ML; Chen LX; Liu XW
    Sci Rep; 2021 Feb; 11(1):3117. PubMed ID: 33542427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain knowledge driven 3D dose prediction using moment-based loss function.
    Jhanwar G; Dahiya N; Ghahremani P; Zarepisheh M; Nadeem S
    Phys Med Biol; 2022 Sep; 67(18):. PubMed ID: 36027876
    [No Abstract]   [Full Text] [Related]  

  • 9. Pareto-optimal plans as ground truth for validation of a commercial system for knowledge-based DVH-prediction.
    Cagni E; Botti A; Wang Y; Iori M; Petit SF; Heijmen BJM
    Phys Med; 2018 Nov; 55():98-106. PubMed ID: 30471826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coverage optimized planning: probabilistic treatment planning based on dose coverage histogram criteria.
    Gordon JJ; Sayah N; Weiss E; Siebers JV
    Med Phys; 2010 Feb; 37(2):550-63. PubMed ID: 20229863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast deep learning approach for beam orientation optimization for prostate cancer treated with intensity-modulated radiation therapy.
    Sadeghnejad Barkousaraie A; Ogunmolu O; Jiang S; Nguyen D
    Med Phys; 2020 Mar; 47(3):880-897. PubMed ID: 31868927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetric features-driven machine learning model for DVH prediction in VMAT treatment planning.
    Ma M; Kovalchuk N; Buyyounouski MK; Xing L; Yang Y
    Med Phys; 2019 Feb; 46(2):857-867. PubMed ID: 30536442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans.
    Yuan L; Ge Y; Lee WR; Yin FF; Kirkpatrick JP; Wu QJ
    Med Phys; 2012 Nov; 39(11):6868-78. PubMed ID: 23127079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-shaping using targeted sparse optimization.
    Sayre GA; Ruan D
    Med Phys; 2013 Jul; 40(7):071711. PubMed ID: 23822415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting dose-volume histograms for organs-at-risk in IMRT planning.
    Appenzoller LM; Michalski JM; Thorstad WL; Mutic S; Moore KL
    Med Phys; 2012 Dec; 39(12):7446-61. PubMed ID: 23231294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knowledge-based planning using both the predicted DVH of organ-at risk and planning target volume.
    Jiao SX; Wang ML; Chen LX; Liu XW
    Med Eng Phys; 2022 Dec; 110():103803. PubMed ID: 35461772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic dose prediction using deep learning and plan optimization with finite-element control for intensity modulated radiation therapy.
    Shen Y; Tang X; Lin S; Jin X; Ding J; Shao M
    Med Phys; 2024 Jan; 51(1):545-555. PubMed ID: 37748133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.
    Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F
    J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility study of fast intensity-modulated proton therapy dose prediction method using deep neural networks for prostate cancer.
    Wang W; Chang Y; Liu Y; Liang Z; Liao Y; Qin B; Liu X; Yang Z
    Med Phys; 2022 Aug; 49(8):5451-5463. PubMed ID: 35543109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Prediction of three-dimensional dose distribution in intensity-modulated radiation therapy based on neural network learning].
    Kong FT; Mai YH; Qi MK; Wu AQ; Guo FT; Jia QY; Li YB; Song T; Zhou LH
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Jun; 38(6):683-690. PubMed ID: 29997090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.