These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 31821590)
1. On Restraints in End-Point Protein-Ligand Binding Free Energy Calculations. Menzer WM; Xie B; Minh DDL J Comput Chem; 2020 Mar; 41(6):573-586. PubMed ID: 31821590 [TBL] [Abstract][Full Text] [Related]
2. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations. Wang B; Li L; Hurley TD; Meroueh SO J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517 [TBL] [Abstract][Full Text] [Related]
3. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Hou T; Wang J; Li Y; Wang W J Chem Inf Model; 2011 Jan; 51(1):69-82. PubMed ID: 21117705 [TBL] [Abstract][Full Text] [Related]
4. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations. Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253 [TBL] [Abstract][Full Text] [Related]
5. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application. Jo S; Jiang W; Lee HS; Roux B; Im W J Chem Inf Model; 2013 Jan; 53(1):267-77. PubMed ID: 23205773 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Receptor-Ligand Restraint Schemes for Alchemical Absolute Binding Free Energy Calculations. Clark F; Robb G; Cole DJ; Michel J J Chem Theory Comput; 2023 Jun; 19(12):3686-3704. PubMed ID: 37285579 [TBL] [Abstract][Full Text] [Related]
7. Develop and test a solvent accessible surface area-based model in conformational entropy calculations. Wang J; Hou T J Chem Inf Model; 2012 May; 52(5):1199-212. PubMed ID: 22497310 [TBL] [Abstract][Full Text] [Related]
8. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Wang J; Deng Y; Roux B Biophys J; 2006 Oct; 91(8):2798-814. PubMed ID: 16844742 [TBL] [Abstract][Full Text] [Related]
9. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes. Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198 [TBL] [Abstract][Full Text] [Related]
10. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: II. regression and dielectric constant. Liu X; Zheng L; Cong Y; Gong Z; Yin Z; Zhang JZH; Liu Z; Sun Z J Comput Aided Mol Des; 2022 Dec; 36(12):879-894. PubMed ID: 36394776 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy Simulations. Siebenmorgen T; Zacharias M J Chem Theory Comput; 2019 Mar; 15(3):2071-2086. PubMed ID: 30698954 [TBL] [Abstract][Full Text] [Related]
13. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Sun H; Duan L; Chen F; Liu H; Wang Z; Pan P; Zhu F; Zhang JZH; Hou T Phys Chem Chem Phys; 2018 May; 20(21):14450-14460. PubMed ID: 29785435 [TBL] [Abstract][Full Text] [Related]
14. Effect of sampling on BACE-1 ligands binding free energy predictions via MM-PBSA calculations. Chéron N; Shakhnovich EI J Comput Chem; 2017 Aug; 38(22):1941-1951. PubMed ID: 28568844 [TBL] [Abstract][Full Text] [Related]
15. Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK. Kasper P; Christen P; Gehring H Proteins; 2000 Aug; 40(2):185-92. PubMed ID: 10842335 [TBL] [Abstract][Full Text] [Related]
16. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797 [TBL] [Abstract][Full Text] [Related]
17. The impact of simulation time in predicting binding free energies using end-point approaches. Sokouti B; Dastmalchi S; Hamzeh-Mivehroud M J Bioinform Comput Biol; 2022 Oct; 20(5):2250024. PubMed ID: 36350600 [TBL] [Abstract][Full Text] [Related]
18. Developing end-point methods for absolute binding free energy calculation using the Boltzmann-quasiharmonic model. Wickstrom L; Gallicchio E; Chen L; Kurtzman T; Deng N Phys Chem Chem Phys; 2022 Mar; 24(10):6037-6052. PubMed ID: 35212338 [TBL] [Abstract][Full Text] [Related]
19. On Analytical Corrections for Restraints in Absolute Binding Free Energy Calculations. Boresch S J Chem Inf Model; 2024 May; 64(9):3605-3609. PubMed ID: 38640478 [TBL] [Abstract][Full Text] [Related]
20. Accurate determination of the binding free energy for KcsA-charybdotoxin complex from the potential of mean force calculations with restraints. Chen PC; Kuyucak S Biophys J; 2011 May; 100(10):2466-74. PubMed ID: 21575581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]