These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31821608)
1. Some statistical consideration in transcriptome-wide association studies. Xue H; Pan W; Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608 [TBL] [Abstract][Full Text] [Related]
2. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
3. Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data. Xue H; Shen X; Pan W J Am Stat Assoc; 2023; 118(543):1525-1537. PubMed ID: 37808547 [TBL] [Abstract][Full Text] [Related]
4. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
5. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
6. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938 [TBL] [Abstract][Full Text] [Related]
7. Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia. Tang S; Buchman AS; De Jager PL; Bennett DA; Epstein MP; Yang J PLoS Genet; 2021 Apr; 17(4):e1009482. PubMed ID: 33798195 [TBL] [Abstract][Full Text] [Related]
8. DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies. He R; Liu M; Lin Z; Zhuang Z; Shen X; Pan W Biostatistics; 2024 Apr; 25(2):468-485. PubMed ID: 36610078 [TBL] [Abstract][Full Text] [Related]
9. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
10. Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics. Luningham JM; Chen J; Tang S; De Jager PL; Bennett DA; Buchman AS; Yang J Am J Hum Genet; 2020 Oct; 107(4):714-726. PubMed ID: 32961112 [TBL] [Abstract][Full Text] [Related]
11. Integrative Post-Genome-Wide Association Study Analyses Relevant to Psychiatric Disorders: Imputing Transcriptome and Proteome Signals. Gedik H; Peterson RE; Riley BP; Vladimirov VI; Bacanu SA Complex Psychiatry; 2023; 9(1-4):130-144. PubMed ID: 37588130 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome-wide association studies accounting for colocalization using Egger regression. Barfield R; Feng H; Gusev A; Wu L; Zheng W; Pasaniuc B; Kraft P Genet Epidemiol; 2018 Jul; 42(5):418-433. PubMed ID: 29808603 [TBL] [Abstract][Full Text] [Related]
13. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia. Wu C; Pan W Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426 [TBL] [Abstract][Full Text] [Related]
14. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 93 risk genes for Alzheimer's disease dementia. Guo S; Yang J medRxiv; 2023 Jul; ():. PubMed ID: 37503151 [TBL] [Abstract][Full Text] [Related]
15. Opportunities and challenges for transcriptome-wide association studies. Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome-wide association study and eQTL colocalization identify potentially causal genes responsible for human bone mineral density GWAS associations. Al-Barghouthi BM; Rosenow WT; Du KP; Heo J; Maynard R; Mesner L; Calabrese G; Nakasone A; Senwar B; Gerstenfeld L; Larner J; Ferguson V; Ackert-Bicknell C; Morgan E; Brautigan D; Farber CR Elife; 2022 Nov; 11():. PubMed ID: 36416764 [TBL] [Abstract][Full Text] [Related]
17. A powerful and versatile colocalization test. Deng Y; Pan W PLoS Comput Biol; 2020 Apr; 16(4):e1007778. PubMed ID: 32275709 [TBL] [Abstract][Full Text] [Related]
18. Power analysis of transcriptome-wide association study: Implications for practical protocol choice. Cao C; Ding B; Li Q; Kwok D; Wu J; Long Q PLoS Genet; 2021 Feb; 17(2):e1009405. PubMed ID: 33635859 [TBL] [Abstract][Full Text] [Related]
19. Inference of causal metabolite networks in the presence of invalid instrumental variables with GWAS summary data. Chen S; Lin Z; Shen X; Li L; Pan W Genet Epidemiol; 2023 Dec; 47(8):585-599. PubMed ID: 37573486 [TBL] [Abstract][Full Text] [Related]
20. Meta-imputation of transcriptome from genotypes across multiple datasets by leveraging publicly available summary-level data. Liu AE; Kang HM PLoS Genet; 2022 Jan; 18(1):e1009571. PubMed ID: 35100255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]