These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31821678)

  • 81. CRISPR-Cas systems: Challenges and future prospects.
    Gohil N; Bhattacharjee G; Lam NL; Perli SD; Singh V
    Prog Mol Biol Transl Sci; 2021; 180():141-151. PubMed ID: 33934835
    [TBL] [Abstract][Full Text] [Related]  

  • 82. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement.
    Rao Y; Yang X; Pan C; Wang C; Wang K
    Front Plant Sci; 2022; 13():839001. PubMed ID: 35645999
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Application of genome editing technologies to the study and treatment of hematological disease.
    Pellagatti A; Dolatshad H; Yip BH; Valletta S; Boultwood J
    Adv Biol Regul; 2016 Jan; 60():122-134. PubMed ID: 26433620
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation.
    Naeimi Kararoudi M; Hejazi SS; Elmas E; Hellström M; Naeimi Kararoudi M; Padma AM; Lee D; Dolatshad H
    Front Immunol; 2018; 9():1711. PubMed ID: 30233563
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci.
    Najah S; Saulnier C; Pernodet JL; Bury-Moné S
    BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fluorescence Marker-Assisted Isolation of Cas9-Free and CRISPR-Edited Arabidopsis Plants.
    Yu H; Zhao Y
    Methods Mol Biol; 2019; 1917():147-154. PubMed ID: 30610634
    [TBL] [Abstract][Full Text] [Related]  

  • 88. CRISPR/Cas9 to generate plant immunity against pathogen.
    Zaynab M; Sharif Y; Fatima M; Afzal MZ; Aslam MM; Raza MF; Anwar M; Raza MA; Sajjad N; Yang X; Li S
    Microb Pathog; 2020 Apr; 141():103996. PubMed ID: 31988004
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations.
    Wang M; Liu Y; Zhang C; Liu J; Liu X; Wang L; Wang W; Chen H; Wei C; Ye X; Li X; Tu J
    PLoS One; 2015; 10(4):e0122755. PubMed ID: 25856577
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Genome editing in cardiovascular diseases.
    Mani I
    Prog Mol Biol Transl Sci; 2021; 181():289-308. PubMed ID: 34127197
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 92. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice.
    Tang X; Liu G; Zhou J; Ren Q; You Q; Tian L; Xin X; Zhong Z; Liu B; Zheng X; Zhang D; Malzahn A; Gong Z; Qi Y; Zhang T; Zhang Y
    Genome Biol; 2018 Jul; 19(1):84. PubMed ID: 29973285
    [TBL] [Abstract][Full Text] [Related]  

  • 93. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize.
    Char SN; Neelakandan AK; Nahampun H; Frame B; Main M; Spalding MH; Becraft PW; Meyers BC; Walbot V; Wang K; Yang B
    Plant Biotechnol J; 2017 Feb; 15(2):257-268. PubMed ID: 27510362
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Gene editing as a promising approach for respiratory diseases.
    Bai Y; Liu Y; Su Z; Ma Y; Ren C; Zhao R; Ji HL
    J Med Genet; 2018 Mar; 55(3):143-149. PubMed ID: 29301855
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications.
    Batzir NA; Tovin A; Hendel A
    Pediatr Endocrinol Rev; 2017 Jun; 14(4):353-363. PubMed ID: 28613045
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Improved Genome Editing in the Ascidian Ciona with CRISPR/Cas9 and TALEN.
    Sasakura Y; Horie T
    Methods Mol Biol; 2023; 2637():375-388. PubMed ID: 36773161
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Recent Advances in the Production of Genome-Edited Rats.
    Sato M; Nakamura S; Inada E; Takabayashi S
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269691
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock.
    Yuan YG; Liu SZ; Farhab M; Lv MY; Zhang T; Cao SX
    Funct Integr Genomics; 2024 May; 24(3):81. PubMed ID: 38709433
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The therapeutic landscape of HIV-1 via genome editing.
    Kwarteng A; Ahuno ST; Kwakye-Nuako G
    AIDS Res Ther; 2017 Jul; 14(1):32. PubMed ID: 28705213
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The Genetic Basis of Reporter Mouse Strains.
    Kim GN; Sung YH
    Adv Exp Med Biol; 2021; 1310():551-564. PubMed ID: 33834450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.