BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31821812)

  • 1. Neutralizing Mutations Significantly Inhibit Amyloid Formation by Human Prion Protein and Decrease Its Cytotoxicity.
    Huang JJ; Li XN; Liu WL; Yuan HY; Gao Y; Wang K; Tang B; Pang DW; Chen J; Liang Y
    J Mol Biol; 2020 Feb; 432(4):828-844. PubMed ID: 31821812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PrP P102L and Nearby Lysine Mutations Promote Spontaneous
    Kraus A; Raymond GJ; Race B; Campbell KJ; Hughson AG; Anson KJ; Raymond LD; Caughey B
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28835493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural effects of the highly protective V127 polymorphism on human prion protein.
    Hosszu LLP; Conners R; Sangar D; Batchelor M; Sawyer EB; Fisher S; Cliff MJ; Hounslow AM; McAuley K; Leo Brady R; Jackson GS; Bieschke J; Waltho JP; Collinge J
    Commun Biol; 2020 Jul; 3(1):402. PubMed ID: 32728168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation.
    Mishra R; Elgland M; Begum A; Fyrner T; Konradsson P; Nyström S; Hammarström P
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):909-921. PubMed ID: 30935958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylation Significantly Inhibits the Aggregation of Human Prion Protein and Decreases Its Cytotoxicity.
    Yi CW; Wang LQ; Huang JJ; Pan K; Chen J; Liang Y
    Sci Rep; 2018 Aug; 8(1):12603. PubMed ID: 30135544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple in vitro assay for assessing the efficacy, mechanisms and kinetics of anti-prion fibril compounds.
    Ladner-Keay CL; Ross L; Perez-Pineiro R; Zhang L; Bjorndahl TC; Cashman N; Wishart DS
    Prion; 2018; 12(5-6):280-300. PubMed ID: 30223704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leu138 in bovine prion peptide fibrils is involved in seeding discrimination related to codon 129 M/V polymorphism in the prion peptide seeding experiment.
    Liao TY; Lee LY; Chen RP
    FEBS J; 2011 Nov; 278(22):4351-61. PubMed ID: 21920025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arg177 and Asp159 from dog prion protein slow liquid-liquid phase separation and inhibit amyloid formation of human prion protein.
    Li XN; Gao Y; Li Y; Yin JX; Yi CW; Yuan HY; Huang JJ; Wang LQ; Chen J; Liang Y
    J Biol Chem; 2023 Nov; 299(11):105329. PubMed ID: 37805139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure.
    Hadži S; Ondračka A; Jerala R; Hafner-Bratkovič I
    FASEB J; 2015 Mar; 29(3):882-93. PubMed ID: 25416551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer.
    Kakuda K; Yamaguchi KI; Kuwata K; Honda R
    Biochem Biophys Res Commun; 2018 Nov; 506(1):81-86. PubMed ID: 30336980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics studies on the buffalo prion protein.
    Zhang J; Wang F; Chatterjee S
    J Biomol Struct Dyn; 2016; 34(4):762-77. PubMed ID: 26043781
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Eraña H; Fernández-Borges N; Elezgarai SR; Harrathi C; Charco JM; Chianini F; Dagleish MP; Ortega G; Millet Ó; Castilla J
    J Virol; 2017 Dec; 91(24):. PubMed ID: 28978705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The native state of prion protein (PrP) directly inhibits formation of PrP-amyloid fibrils in vitro.
    Honda RP; Kuwata K
    Sci Rep; 2017 Apr; 7(1):562. PubMed ID: 28373719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The engineered peptide construct NCAM1-Aβ inhibits fibrillization of the human prion protein (PrP).
    Gielnik M; Zhukova L; Zhukov I; Gräslund A; Kozak M; Wärmländer S
    Acta Biochim Pol; 2022 Feb; 69(1):257-261. PubMed ID: 35143147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular approaches to mechanisms of prion diseases.
    Bratosiewicz-Wasik J; Wasik TJ; Liberski PP
    Folia Neuropathol; 2004; 42 Suppl A():33-46. PubMed ID: 15449458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of divalent cations on elk prion protein fibril formation and stability.
    Samorodnitsky D; Nicholson EM
    Prion; 2018 Jan; 12(1):63-71. PubMed ID: 29310497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic insight into prion disorder: An intricate detail gained by 0.5 μs molecular dynamics simulation of preventive G127V and deleterious D178V mutation in prion protein.
    Gharemirshamlu FR; Bamdad K; Naeimi S
    J Cell Biochem; 2019 Aug; 120(8):14156-14164. PubMed ID: 30977169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.
    Honda R
    Angew Chem Int Ed Engl; 2018 May; 57(21):6086-6089. PubMed ID: 29645399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.