These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31821855)

  • 1. Pharmacological chaperones of ATP-sensitive potassium channels: Mechanistic insight from cryoEM structures.
    Martin GM; Sung MW; Shyng SL
    Mol Cell Endocrinol; 2020 Feb; 502():110667. PubMed ID: 31821855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.
    Martin GM; Rex EA; Devaraneni P; Denton JS; Boodhansingh KE; DeLeon DD; Stanley CA; Shyng SL
    J Biol Chem; 2016 Oct; 291(42):21971-21983. PubMed ID: 27573238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism.
    Chen PC; Olson EM; Zhou Q; Kryukova Y; Sampson HM; Thomas DY; Shyng SL
    J Biol Chem; 2013 Jul; 288(29):20942-20954. PubMed ID: 23744072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels.
    Martin GM; Chen PC; Devaraneni P; Shyng SL
    Front Physiol; 2013 Dec; 4():386. PubMed ID: 24399968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy.
    Driggers CM; Shyng SL
    Methods Enzymol; 2021; 653():121-150. PubMed ID: 34099169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of pharmacochaperoning in a mammalian K
    Martin GM; Sung MW; Yang Z; Innes LM; Kandasamy B; David LL; Yoshioka C; Shyng SL
    Elife; 2019 Jul; 8():. PubMed ID: 31343405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue.
    Yan FF; Lin YW; MacMullen C; Ganguly A; Stanley CA; Shyng SL
    Diabetes; 2007 Sep; 56(9):2339-48. PubMed ID: 17575084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K
    Sikimic J; McMillen TS; Bleile C; Dastvan F; Quast U; Krippeit-Drews P; Drews G; Bryan J
    J Biol Chem; 2019 Mar; 294(10):3707-3719. PubMed ID: 30587573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights on KATP channel regulation from cryo-EM structures.
    Driggers CM; Shyng SL
    J Gen Physiol; 2023 Jan; 155(1):. PubMed ID: 36441147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pancreatic β-cell KATP channels: Hypoglycaemia and hyperglycaemia.
    Bennett K; James C; Hussain K
    Rev Endocr Metab Disord; 2010 Sep; 11(3):157-63. PubMed ID: 20878482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structurally distinct ligands rescue biogenesis defects of the KATP channel complex via a converging mechanism.
    Devaraneni PK; Martin GM; Olson EM; Zhou Q; Shyng SL
    J Biol Chem; 2015 Mar; 290(12):7980-91. PubMed ID: 25637631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular biology of adenosine triphosphate-sensitive potassium channels.
    Aguilar-Bryan L; Bryan J
    Endocr Rev; 1999 Apr; 20(2):101-35. PubMed ID: 10204114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism.
    Gloyn AL; Siddiqui J; Ellard S
    Hum Mutat; 2006 Mar; 27(3):220-31. PubMed ID: 16416420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-mediated Structural Dynamics of a Mammalian Pancreatic K
    Sung MW; Driggers CM; Mostofian B; Russo JD; Patton BL; Zuckerman DM; Shyng SL
    J Mol Biol; 2022 Oct; 434(19):167789. PubMed ID: 35964676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a Pancreatic ATP-Sensitive Potassium Channel.
    Li N; Wu JX; Ding D; Cheng J; Gao N; Chen L
    Cell; 2017 Jan; 168(1-2):101-110.e10. PubMed ID: 28086082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the C-terminus of SUR in the differential regulation of β-cell and cardiac K
    Vedovato N; Rorsman O; Hennis K; Ashcroft FM; Proks P
    J Physiol; 2018 Dec; 596(24):6205-6217. PubMed ID: 30179258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex.
    Yan FF; Casey J; Shyng SL
    J Biol Chem; 2006 Nov; 281(44):33403-13. PubMed ID: 16956886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of mutations in the Kir6.2 subunit of the K(ATP) channel.
    Flanagan SE; Ellard S
    Methods Mol Biol; 2008; 491():235-45. PubMed ID: 18998097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating.
    Martin GM; Yoshioka C; Rex EA; Fay JF; Xie Q; Whorton MR; Chen JZ; Shyng SL
    Elife; 2017 Jan; 6():. PubMed ID: 28092267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release.
    Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J
    J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.