These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31821865)

  • 1. Deep learning segmentation of orbital fat to calibrate conventional MRI for longitudinal studies.
    Brown RA; Fetco D; Fratila R; Fadda G; Jiang S; Alkhawajah NM; Yeh EA; Banwell B; Bar-Or A; Arnold DL;
    Neuroimage; 2020 Mar; 208():116442. PubMed ID: 31821865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.
    Wang JY; Ngo MM; Hessl D; Hagerman RJ; Rivera SM
    PLoS One; 2016; 11(5):e0156123. PubMed ID: 27213683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases.
    Sander L; Pezold S; Andermatt S; Amann M; Meier D; Wendebourg MJ; Sinnecker T; Radue EW; Naegelin Y; Granziera C; Kappos L; Wuerfel J; Cattin P; Schlaeger R;
    Hum Brain Mapp; 2019 Oct; 40(14):4091-4104. PubMed ID: 31206931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality.
    Estler A; Zerweck L; Brunnée M; Estler B; Richter V; Örgel A; Bürkle E; Becker H; Hurth H; Stahl S; Konrad EM; Kelbsch C; Ernemann U; Hauser TK; Gohla G
    J Neuroimaging; 2024; 34(2):232-240. PubMed ID: 38195858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence.
    McKinley R; Wepfer R; Grunder L; Aschwanden F; Fischer T; Friedli C; Muri R; Rummel C; Verma R; Weisstanner C; Wiestler B; Berger C; Eichinger P; Muhlau M; Reyes M; Salmen A; Chan A; Wiest R; Wagner F
    Neuroimage Clin; 2020; 25():102104. PubMed ID: 31927500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fidelity imposed network edit (FINE) for solving ill-posed image reconstruction.
    Zhang J; Liu Z; Zhang S; Zhang H; Spincemaille P; Nguyen TD; Sabuncu MR; Wang Y
    Neuroimage; 2020 May; 211():116579. PubMed ID: 31981779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIR-weighted images - the difficulty of choosing.
    Lindig T; Kotikalapudi R; Schweikardt D; Martin P; Bender F; Klose U; Ernemann U; Focke NK; Bender B
    Neuroimage; 2018 Apr; 170():210-221. PubMed ID: 28188918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.
    Jain S; Sima DM; Ribbens A; Cambron M; Maertens A; Van Hecke W; De Mey J; Barkhof F; Steenwijk MD; Daams M; Maes F; Van Huffel S; Vrenken H; Smeets D
    Neuroimage Clin; 2015; 8():367-75. PubMed ID: 26106562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.
    Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J
    Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jointly estimating bias field and reconstructing uniform MRI image by deep learning.
    Song W; Zeng C; Zhang X; Wang Z; Huang Y; Lin J; Wei W; Qu X
    J Magn Reson; 2022 Oct; 343():107301. PubMed ID: 36126552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of head motion-induced artefacts on the reliability of deep learning-based whole-brain segmentation.
    Kemenczky P; Vakli P; Somogyi E; Homolya I; Hermann P; Gál V; Vidnyánszky Z
    Sci Rep; 2022 Jan; 12(1):1618. PubMed ID: 35102199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepComBat: A statistically motivated, hyperparameter-robust, deep learning approach to harmonization of neuroimaging data.
    Hu F; Lucas A; Chen AA; Coleman K; Horng H; Ng RWS; Tustison NJ; Davis KA; Shou H; Li M; Shinohara RT;
    Hum Brain Mapp; 2024 Aug; 45(11):e26708. PubMed ID: 39056477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets.
    Billot B; Magdamo C; Cheng Y; Arnold SE; Das S; Iglesias JE
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2216399120. PubMed ID: 36802420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases.
    Pizarro R; Assemlal HE; De Nigris D; Elliott C; Antel S; Arnold D; Shmuel A
    Neuroinformatics; 2019 Jan; 17(1):115-130. PubMed ID: 29956131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.