These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31821865)

  • 21. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.
    Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H
    Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.
    Dolz J; Desrosiers C; Ben Ayed I
    Neuroimage; 2018 Apr; 170():456-470. PubMed ID: 28450139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI.
    Laukamp KR; Thiele F; Shakirin G; Zopfs D; Faymonville A; Timmer M; Maintz D; Perkuhn M; Borggrefe J
    Eur Radiol; 2019 Jan; 29(1):124-132. PubMed ID: 29943184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PSACNN: Pulse sequence adaptive fast whole brain segmentation.
    Jog A; Hoopes A; Greve DN; Van Leemput K; Fischl B
    Neuroimage; 2019 Oct; 199():553-569. PubMed ID: 31129303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls.
    Yoo Y; Tang LYW; Brosch T; Li DKB; Kolind S; Vavasour I; Rauscher A; MacKay AL; Traboulsee A; Tam RC
    Neuroimage Clin; 2018; 17():169-178. PubMed ID: 29071211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative MR imaging of intra-orbital structures: Tissue-specific measurements and age dependency compared to extra-orbital structures using multispectral quantitative MR imaging.
    Watanabe M; Buch K; Fujita A; Jara H; Qureshi MM; Sakai O
    Orbit; 2017 Aug; 36(4):189-196. PubMed ID: 28436752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FastSurfer - A fast and accurate deep learning based neuroimaging pipeline.
    Henschel L; Conjeti S; Estrada S; Diers K; Fischl B; Reuter M
    Neuroimage; 2020 Oct; 219():117012. PubMed ID: 32526386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.
    Alfaro-Almagro F; Jenkinson M; Bangerter NK; Andersson JLR; Griffanti L; Douaud G; Sotiropoulos SN; Jbabdi S; Hernandez-Fernandez M; Vallee E; Vidaurre D; Webster M; McCarthy P; Rorden C; Daducci A; Alexander DC; Zhang H; Dragonu I; Matthews PM; Miller KL; Smith SM
    Neuroimage; 2018 Feb; 166():400-424. PubMed ID: 29079522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SIENA-XL for improving the assessment of gray and white matter volume changes on brain MRI.
    Battaglini M; Jenkinson M; De Stefano N;
    Hum Brain Mapp; 2018 Mar; 39(3):1063-1077. PubMed ID: 29222814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI.
    Meier DS; Guttmann CRG; Tummala S; Moscufo N; Cavallari M; Tauhid S; Bakshi R; Weiner HL
    J Neuroimaging; 2018 Jan; 28(1):36-47. PubMed ID: 29235194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved synthetic T1-weighted images for cerebral tissue segmentation in neurological diseases.
    Gracien RM; van Wijnen A; Maiworm M; Petrov F; Merkel N; Paule E; Steinmetz H; Knake S; Rosenow F; Wagner M; Deichmann R
    Magn Reson Imaging; 2019 Sep; 61():158-166. PubMed ID: 31075421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy.
    Guha Roy A; Conjeti S; Navab N; Wachinger C;
    Neuroimage; 2019 Feb; 186():713-727. PubMed ID: 30502445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain volume loss in individuals over time: Source of variance and limits of detectability.
    Narayanan S; Nakamura K; Fonov VS; Maranzano J; Caramanos Z; Giacomini PS; Collins DL; Arnold DL
    Neuroimage; 2020 Jul; 214():116737. PubMed ID: 32171923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping internal brainstem structures using MP2RAGE derived T1 weighted and T1 relaxation images at 3 and 7 T.
    Mueller SG
    Hum Brain Mapp; 2020 Jun; 41(8):2173-2186. PubMed ID: 31971322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attention-guided deep learning for gestational age prediction using fetal brain MRI.
    Shen L; Zheng J; Lee EH; Shpanskaya K; McKenna ES; Atluri MG; Plasto D; Mitchell C; Lai LM; Guimaraes CV; Dahmoush H; Chueh J; Halabi SS; Pauly JM; Xing L; Lu Q; Oztekin O; Kline-Fath BM; Yeom KW
    Sci Rep; 2022 Jan; 12(1):1408. PubMed ID: 35082346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM).
    Feng X; Deistung A; Dwyer MG; Hagemeier J; Polak P; Lebenberg J; Frouin F; Zivadinov R; Reichenbach JR; Schweser F
    Magn Reson Imaging; 2017 Jun; 39():110-122. PubMed ID: 28188873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging.
    Schmidt P; Pongratz V; Küster P; Meier D; Wuerfel J; Lukas C; Bellenberg B; Zipp F; Groppa S; Sämann PG; Weber F; Gaser C; Franke T; Bussas M; Kirschke J; Zimmer C; Hemmer B; Mühlau M
    Neuroimage Clin; 2019; 23():101849. PubMed ID: 31085465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Testing a deep convolutional neural network for automated hippocampus segmentation in a longitudinal sample of healthy participants.
    Nogovitsyn N; Souza R; Muller M; Srajer A; Hassel S; Arnott SR; Davis AD; Hall GB; Harris JK; Zamyadi M; Metzak PD; Ismail Z; Bray SL; Lebel C; Addington JM; Milev R; Harkness KL; Frey BN; Lam RW; Strother SC; Goldstein BI; Rotzinger S; Kennedy SH; MacQueen GM
    Neuroimage; 2019 Aug; 197():589-597. PubMed ID: 31075395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.