These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31822458)

  • 1. Peroxidases from an invasive Mesquite species for management and restoration of fertility of phenolic-contaminated soil.
    Singh S; Malhotra S; Mukherjee P; Mishra R; Farooqi F; Sharma RS; Mishra V
    J Environ Manage; 2020 Feb; 256():109908. PubMed ID: 31822458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenol remediation by peroxidase from an invasive mesquite: Turning an environmental wound into wisdom.
    Singh S; Mishra R; Sharma RS; Mishra V
    J Hazard Mater; 2017 Jul; 334():201-211. PubMed ID: 28412630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organ-wise accumulation of fluoride in Prosopis juliflora and its potential for phytoremediation of fluoride contaminated soil.
    Saini P; Khan S; Baunthiyal M; Sharma V
    Chemosphere; 2012 Oct; 89(5):633-5. PubMed ID: 22704972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.
    Senthilkumar P; Prince WS; Sivakumar S; Subbhuraam CV
    Chemosphere; 2005 Sep; 60(10):1493-6. PubMed ID: 16054919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium.
    Varun M; D'Souza R; Pratas J; Paul MS
    Bull Environ Contam Toxicol; 2011 Jul; 87(1):45-9. PubMed ID: 21556781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd's purse roots.
    Park JW; Park BK; Kim JE
    Arch Environ Contam Toxicol; 2006 Feb; 50(2):191-5. PubMed ID: 16392021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prosopis pubescens (screw bean mesquite) seedlings are hyperaccumulators of copper.
    Zappala MN; Ellzey JT; Bader J; Peralta-Videa JR; Gardea-Torresdey J
    Arch Environ Contam Toxicol; 2013 Aug; 65(2):212-23. PubMed ID: 23612918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Fe
    Kumari S; Khan S
    Ecotoxicol Environ Saf; 2018 Dec; 166():419-426. PubMed ID: 30292108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS.
    Aldrich MV; Gardea-Torresdey JL; Peralta-Videa JR; Parsons JG
    Environ Sci Technol; 2003 May; 37(9):1859-64. PubMed ID: 12775058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of enzymatically polymerized phenolic chemicals in a model soil organic matter-free geomaterial.
    Palomo M; Bhandari A
    J Environ Qual; 2012; 41(6):1916-22. PubMed ID: 23128748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of peroxidases from garden cress sprouts and their roles in lignification and removal of phenol and p-chlorophenol.
    Abdel-Aty AM; Salama WH; El-Badry MO; Salah HA; Barakat AZ; Fahmy AS; Mohamed SA
    J Food Biochem; 2021 Jan; 45(1):e13526. PubMed ID: 33140461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons.
    Kaur R; Gonzáles WL; Llambi LD; Soriano PJ; Callaway RM; Rout ME; Gallaher TJ; Inderjit
    PLoS One; 2012; 7(9):e44966. PubMed ID: 22984595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation of chlorophenol-contaminated sawmill soil using pilot-scale bioreactors under consecutive anaerobic-aerobic conditions.
    Lopez-Echartea E; Strejcek M; Mateju V; Vosahlova S; Kyclt R; Demnerova K; Uhlik O
    Chemosphere; 2019 Jul; 227():670-680. PubMed ID: 31022668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic oxidation of phenolic compounds in coffee processing wastewater.
    Torres JA; Batista Chagas PM; Silva MC; dos Santos CD; Duarte Corrêa A
    Water Sci Technol; 2016; 73(1):39-50. PubMed ID: 26744933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry.
    Kahru A; Maloverjan A; Sillak H; Põllumaa L
    Environ Sci Pollut Res Int; 2002; Spec No 1():27-33. PubMed ID: 12638745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of copper sulfate on seedlings of Prosopis pubescens (screwbean mesquite).
    Zappala MN; Ellzey JT; Bader J; Peralta-Videa JR; Gardea-Torresdey J
    Int J Phytoremediation; 2014; 16(7-12):1031-41. PubMed ID: 24933900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges.
    Singh AK; Bilal M; Iqbal HMN; Meyer AS; Raj A
    Sci Total Environ; 2021 Jul; 777():145988. PubMed ID: 33684751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Favouring NO over H
    Zafari S; Sharifi M; Mur LAJ; Chashmi NA
    Ecotoxicol Environ Saf; 2017 Aug; 142():293-302. PubMed ID: 28433594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal.
    Jiang Y; Tang W; Gao J; Zhou L; He Y
    Enzyme Microb Technol; 2014 Feb; 55():1-6. PubMed ID: 24411438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.