These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches. Revzen S; Burden SA; Moore TY; Mongeau JM; Full RJ Biol Cybern; 2013 Apr; 107(2):179-200. PubMed ID: 23371006 [TBL] [Abstract][Full Text] [Related]
7. Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach. Ridgel AL; Ritzmann RE; Schaefer PL J Exp Biol; 2003 Dec; 206(Pt 24):4453-65. PubMed ID: 14610030 [TBL] [Abstract][Full Text] [Related]
8. Mechanical models for insect locomotion: active muscles and energy losses. Schmitt J; Holmes P Biol Cybern; 2003 Jul; 89(1):43-55. PubMed ID: 12836032 [TBL] [Abstract][Full Text] [Related]
9. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control. Biewener AA; Daley MA J Exp Biol; 2007 Sep; 210(Pt 17):2949-60. PubMed ID: 17704070 [TBL] [Abstract][Full Text] [Related]
10. A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. Ahn AN; Full RJ J Exp Biol; 2002 Feb; 205(Pt 3):379-89. PubMed ID: 11854374 [TBL] [Abstract][Full Text] [Related]
11. Understanding muscle function during perturbed in vivo locomotion using a muscle avatar approach. Rice N; Bemis CM; Daley MA; Nishikawa K J Exp Biol; 2023 Jul; 226(13):. PubMed ID: 37334740 [TBL] [Abstract][Full Text] [Related]
12. Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback. Kukillaya R; Proctor J; Holmes P Chaos; 2009 Jun; 19(2):026107. PubMed ID: 19566267 [TBL] [Abstract][Full Text] [Related]
13. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron. Ahn AN; Meijer K; Full RJ J Exp Biol; 2006 Sep; 209(Pt 17):3370-82. PubMed ID: 16916973 [TBL] [Abstract][Full Text] [Related]
15. Loss of set in muscle responses to limb perturbations during cerebellar dysfunction. Hore J; Vilis T J Neurophysiol; 1984 Jun; 51(6):1137-48. PubMed ID: 6737025 [TBL] [Abstract][Full Text] [Related]
16. A single muscle's multifunctional control potential of body dynamics for postural control and running. Sponberg S; Spence AJ; Mullens CH; Full RJ Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1592-605. PubMed ID: 21502129 [TBL] [Abstract][Full Text] [Related]
17. Swing Velocity Profiles of Small Limbs Can Arise from Transient Passive Torques of the Antagonist Muscle Alone. von Twickel A; Guschlbauer C; Hooper SL; Büschges A Curr Biol; 2019 Jan; 29(1):1-12.e7. PubMed ID: 30581019 [TBL] [Abstract][Full Text] [Related]
18. An isolated insect leg's passive recovery from dorso-ventral perturbations. Dudek DM; Full RJ J Exp Biol; 2007 Sep; 210(Pt 18):3209-17. PubMed ID: 17766298 [TBL] [Abstract][Full Text] [Related]
19. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement. Olberding JP; Deban SM; Rosario MV; Azizi E Integr Comp Biol; 2019 Dec; 59(6):1515-1524. PubMed ID: 31397849 [TBL] [Abstract][Full Text] [Related]
20. Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. Bosco G; Poppele RE J Neurophysiol; 2003 Nov; 90(5):3372-83. PubMed ID: 14615435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]