These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 31822559)

  • 1. Mechanism of activation for the sirtuin 6 protein deacylase.
    Klein MA; Liu C; Kuznetsov VI; Feltenberger JB; Tang W; Denu JM
    J Biol Chem; 2020 Jan; 295(5):1385-1399. PubMed ID: 31822559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins.
    Feldman JL; Baeza J; Denu JM
    J Biol Chem; 2013 Oct; 288(43):31350-6. PubMed ID: 24052263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators.
    Klein MA; Denu JM
    J Biol Chem; 2020 Aug; 295(32):11021-11041. PubMed ID: 32518153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding the gas pedal on a slow sirtuin.
    Nielsen AL; Olsen CA
    J Biol Chem; 2020 Jan; 295(5):1400-1401. PubMed ID: 32005646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance.
    Gertman O; Omer D; Hendler A; Stein D; Onn L; Khukhin Y; Portillo M; Zarivach R; Cohen HY; Toiber D; Aharoni A
    Sci Rep; 2018 Feb; 8(1):3538. PubMed ID: 29476161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitro-fatty acids as activators of hSIRT6 deacetylase activity.
    Carreño M; Bresque M; Machado MR; Santos L; Durán R; Vitturi DA; Escande C; Denicola A
    J Biol Chem; 2020 Dec; 295(52):18355-18366. PubMed ID: 33122195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trichostatin A inhibits deacetylation of histone H3 and p53 by SIRT6.
    Wood M; Rymarchyk S; Zheng S; Cen Y
    Arch Biochem Biophys; 2018 Jan; 638():8-17. PubMed ID: 29233643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the Allosteric Activation Mechanism of SIRT6 Using Molecular Dynamics Simulations.
    Zhao Z; Du J; Du Y; Gao Y; Yu M; Zhang Y; Fang H; Hou X
    J Chem Inf Model; 2023 Sep; 63(18):5896-5902. PubMed ID: 37653718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential modulation of SIRT6 deacetylase and deacylase activities by lysine-based small molecules.
    Sociali G; Liessi N; Grozio A; Caffa I; Parenti MD; Ravera S; Tasso B; Benzi A; Nencioni A; Del Rio A; Robina I; Millo E; Bruzzone S
    Mol Divers; 2020 Aug; 24(3):655-671. PubMed ID: 31240519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Basis of Sirtuin 6 Activation by Synthetic Small Molecules.
    You W; Rotili D; Li TM; Kambach C; Meleshin M; Schutkowski M; Chua KF; Mai A; Steegborn C
    Angew Chem Int Ed Engl; 2017 Jan; 56(4):1007-1011. PubMed ID: 27990725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and biochemical functions of SIRT6.
    Pan PW; Feldman JL; Devries MK; Dong A; Edwards AM; Denu JM
    J Biol Chem; 2011 Apr; 286(16):14575-87. PubMed ID: 21362626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivalent interactions drive nucleosome binding and efficient chromatin deacetylation by SIRT6.
    Liu WH; Zheng J; Feldman JL; Klein MA; Kuznetsov VI; Peterson CL; Griffin PR; Denu JM
    Nat Commun; 2020 Oct; 11(1):5244. PubMed ID: 33067423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIRT7 Is Activated by DNA and Deacetylates Histone H3 in the Chromatin Context.
    Tong Z; Wang Y; Zhang X; Kim DD; Sadhukhan S; Hao Q; Lin H
    ACS Chem Biol; 2016 Mar; 11(3):742-7. PubMed ID: 26907567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying SIRT6 regulation using H3K56 based substrate and small molecules.
    Kokkonen P; Rahnasto-Rilla M; Mellini P; Jarho E; Lahtela-Kakkonen M; Kokkola T
    Eur J Pharm Sci; 2014 Oct; 63():71-6. PubMed ID: 25004411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes.
    Tanabe K; Liu J; Kato D; Kurumizaka H; Yamatsugu K; Kanai M; Kawashima SA
    Sci Rep; 2018 Feb; 8(1):2656. PubMed ID: 29422688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian SIRT6 Represses Invasive Cancer Cell Phenotypes through ATP Citrate Lyase (ACLY)-Dependent Histone Acetylation.
    Zheng W; Tasselli L; Li TM; Chua KF
    Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding to nucleosome poises human SIRT6 for histone H3 deacetylation.
    Smirnova E; Bignon E; Schultz P; Papai G; Ben Shem A
    Elife; 2024 Feb; 12():. PubMed ID: 38415718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators.
    Lu S; Chen Y; Wei J; Zhao M; Ni D; He X; Zhang J
    Acta Pharm Sin B; 2021 May; 11(5):1355-1361. PubMed ID: 34094839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.