These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 31822564)
41. Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. Agwa AJ; Peigneur S; Chow CY; Lawrence N; Craik DJ; Tytgat J; King GF; Henriques ST; Schroeder CI J Biol Chem; 2018 Jun; 293(23):9041-9052. PubMed ID: 29703751 [TBL] [Abstract][Full Text] [Related]
42. Unwinding and spiral sliding of S4 and domain rotation of VSD during the electromechanical coupling in Na Huang G; Wu Q; Li Z; Jin X; Huang X; Wu T; Pan X; Yan N Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2209164119. PubMed ID: 35878056 [TBL] [Abstract][Full Text] [Related]
43. Navβ4 regulates fast resurgent sodium currents and excitability in sensory neurons. Barbosa C; Tan ZY; Wang R; Xie W; Strong JA; Patel RR; Vasko MR; Zhang JM; Cummins TR Mol Pain; 2015 Sep; 11():60. PubMed ID: 26408173 [TBL] [Abstract][Full Text] [Related]
44. Bioluminescence methodology for the detection of protein-protein interactions within the voltage-gated sodium channel macromolecular complex. Shavkunov A; Panova N; Prasai A; Veselenak R; Bourne N; Stoilova-McPhie S; Laezza F Assay Drug Dev Technol; 2012 Apr; 10(2):148-60. PubMed ID: 22364545 [TBL] [Abstract][Full Text] [Related]
45. Nav1.5 channels can reach the plasma membrane through distinct N-glycosylation states. Mercier A; Clément R; Harnois T; Bourmeyster N; Bois P; Chatelier A Biochim Biophys Acta; 2015 Jun; 1850(6):1215-23. PubMed ID: 25721215 [TBL] [Abstract][Full Text] [Related]
47. Single-Molecule Localization of the Cardiac Voltage-Gated Sodium Channel Reveals Different Modes of Reorganization at Cardiomyocyte Membrane Domains. Vermij SH; Rougier JS; Agulló-Pascual E; Rothenberg E; Delmar M; Abriel H Circ Arrhythm Electrophysiol; 2020 Jul; 13(7):e008241. PubMed ID: 32536203 [TBL] [Abstract][Full Text] [Related]
48. A targeting motif involved in sodium channel clustering at the axonal initial segment. Garrido JJ; Giraud P; Carlier E; Fernandes F; Moussif A; Fache MP; Debanne D; Dargent B Science; 2003 Jun; 300(5628):2091-4. PubMed ID: 12829783 [TBL] [Abstract][Full Text] [Related]
49. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H. Vasylyev DV; Han C; Zhao P; Dib-Hajj S; Waxman SG J Neurophysiol; 2014 Apr; 111(7):1429-43. PubMed ID: 24401712 [TBL] [Abstract][Full Text] [Related]
50. Dynamic compartmentalization of the voltage-gated sodium channels in axons. Garrido JJ; Fernandes F; Moussif A; Fache MP; Giraud P; Dargent B Biol Cell; 2003 Oct; 95(7):437-45. PubMed ID: 14597261 [TBL] [Abstract][Full Text] [Related]
51. Natural mutations change the affinity of μ-theraphotoxin-Hhn2a to voltage-gated sodium channels. Zhang F; Liu Y; Zhang C; Li J; Yang Z; Gong X; Gan Y; Chen P; Liu Z; Liang S Toxicon; 2015 Jan; 93():24-30. PubMed ID: 25447770 [TBL] [Abstract][Full Text] [Related]
52. Erythromelalgia mutation Q875E Stabilizes the activated state of sodium channel Nav1.7. Stadler T; O'Reilly AO; Lampert A J Biol Chem; 2015 Mar; 290(10):6316-25. PubMed ID: 25575597 [TBL] [Abstract][Full Text] [Related]
54. Benzonatate inhibition of voltage-gated sodium currents. Evans MS; Maglinger GB; Fletcher AM; Johnson SR Neuropharmacology; 2016 Feb; 101():179-87. PubMed ID: 26386152 [TBL] [Abstract][Full Text] [Related]
55. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Fux JE; Mehta A; Moffat J; Spafford JD Front Physiol; 2018; 9():1406. PubMed ID: 30519187 [TBL] [Abstract][Full Text] [Related]
56. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Huang W; Liu M; Yan SF; Yan N Protein Cell; 2017 Jun; 8(6):401-438. PubMed ID: 28150151 [TBL] [Abstract][Full Text] [Related]
57. Kinetic Analysis of Membrane Potential Dye Response to NaV1.7 Channel Activation Identifies Antagonists with Pharmacological Selectivity against NaV1.5. Finley M; Cassaday J; Kreamer T; Li X; Solly K; O'Donnell G; Clements M; Converso A; Cook S; Daley C; Kraus R; Lai MT; Layton M; Lemaire W; Staas D; Wang J J Biomol Screen; 2016 Jun; 21(5):480-9. PubMed ID: 26861708 [TBL] [Abstract][Full Text] [Related]
58. Electrophysiological and trafficking defects of the SCN5A T353I mutation in Brugada syndrome are rescued by alpha-allocryptopine. Zhang J; Chen Y; Yang J; Xu B; Wen Y; Xiang G; Wei G; Zhu C; Xing Y; Li Y Eur J Pharmacol; 2015 Jan; 746():333-43. PubMed ID: 25261036 [TBL] [Abstract][Full Text] [Related]
59. Mutant cycle analysis with modified saxitoxins reveals specific interactions critical to attaining high-affinity inhibition of hNaV1.7. Thomas-Tran R; Du Bois J Proc Natl Acad Sci U S A; 2016 May; 113(21):5856-61. PubMed ID: 27162340 [TBL] [Abstract][Full Text] [Related]
60. Identification of WB4101, an Li M; Wu Y; Zou B; Wang X; Li M; Yu H Mol Pharmacol; 2018 Aug; 94(2):896-906. PubMed ID: 29884692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]