These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31822630)
1. Cyclic uniaxial mechanical stretching of cells using a LEGO Boulter E; Tissot FS; Dilly J; Pisano S; Féral CC J Cell Sci; 2020 Jan; 133(1):. PubMed ID: 31822630 [TBL] [Abstract][Full Text] [Related]
2. Cyclic uniaxial cell stretching in tissue culture using a LEGO®-based mechanical stretcher and a polydimethylsiloxane stretchable vessel. Boulter E; Féral CC STAR Protoc; 2021 Jun; 2(2):100437. PubMed ID: 33899018 [TBL] [Abstract][Full Text] [Related]
3. Design of a 3D printed, motorized, uniaxial cell stretcher for microscopic and biochemical analysis of mechanotransduction. Al-Maslamani NA; Khilan AA; Horn HF Biol Open; 2021 Feb; 10(2):. PubMed ID: 33563607 [TBL] [Abstract][Full Text] [Related]
4. Cell Stretcher Assay to Analyze Mechanoresponses to Cyclic Stretching. Püllen R; Konrad J; Hoffmann B; Merkel R Methods Mol Biol; 2023; 2600():91-105. PubMed ID: 36587092 [TBL] [Abstract][Full Text] [Related]
5. A Low-Cost Mechanical Stretching Device for Uniaxial Strain of Cells: A Platform for Pedagogy in Mechanobiology. Atcha H; Davis CT; Sullivan NR; Smith TD; Anis S; Dahbour WZ; Robinson ZR; Grosberg A; Liu WF J Biomech Eng; 2018 Aug; 140(8):0810051-9. PubMed ID: 30003248 [TBL] [Abstract][Full Text] [Related]
6. A low-cost uniaxial cell stretcher for six parallel wells. Kah D; Winterl A; Přechová M; Schöler U; Schneider W; Friedrich O; Gregor M; Fabry B HardwareX; 2021 Apr; 9():e00162. PubMed ID: 35492050 [TBL] [Abstract][Full Text] [Related]
7. Different Frequency of Cyclic Tensile Strain Relates to Anabolic/Catabolic Conditions Consistent with Immunohistochemical Staining Intensity in Tenocytes. Kubo Y; Hoffmann B; Goltz K; Schnakenberg U; Jahr H; Merkel R; Schulze-Tanzil G; Pufe T; Tohidnezhad M Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32041254 [TBL] [Abstract][Full Text] [Related]
8. Brick Strex: a robust device built of LEGO bricks for mechanical manipulation of cells. Mäntylä E; Ihalainen TO Sci Rep; 2021 Sep; 11(1):18520. PubMed ID: 34531455 [TBL] [Abstract][Full Text] [Related]
9. Creating homogenous strain distribution within 3D cell-encapsulated constructs using a simple and cost-effective uniaxial tensile bioreactor: Design and validation study. Subramanian G; Elsaadany M; Bialorucki C; Yildirim-Ayan E Biotechnol Bioeng; 2017 Aug; 114(8):1878-1887. PubMed ID: 28425561 [TBL] [Abstract][Full Text] [Related]
10. Stepwise morphological changes and cytoskeletal reorganization of human mesenchymal stem cells treated by short-time cyclic uniaxial stretch. Parandakh A; Tafazzoli-Shadpour M; Khani MM In Vitro Cell Dev Biol Anim; 2017 Jun; 53(6):547-553. PubMed ID: 28205142 [TBL] [Abstract][Full Text] [Related]
11. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. Yang G; Crawford RC; Wang JH J Biomech; 2004 Oct; 37(10):1543-50. PubMed ID: 15336929 [TBL] [Abstract][Full Text] [Related]
12. Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study. Hu JJ; Liu YC; Chen GW; Wang MX; Lee PY Biomech Model Mechanobiol; 2013 Oct; 12(5):849-68. PubMed ID: 23096240 [TBL] [Abstract][Full Text] [Related]
13. Design and construction of a uniaxial cell stretcher. Yost MJ; Simpson D; Wrona K; Ridley S; Ploehn HJ; Borg TK; Terracio L Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H3124-30. PubMed ID: 11087271 [TBL] [Abstract][Full Text] [Related]
14. Controlling cell responses to cyclic mechanical stretching. Wang JH; Yang G; Li Z Ann Biomed Eng; 2005 Mar; 33(3):337-42. PubMed ID: 15868724 [TBL] [Abstract][Full Text] [Related]
15. A uniaxial cell stretcher in vitro model simulating tissue expansion of plastic surgery. Fu S; Fan J; Liu L; Jiao H; Gan C; Tian J; Chen W; Yang Z; Yin Z J Craniofac Surg; 2013 Jul; 24(4):1431-5. PubMed ID: 23851825 [TBL] [Abstract][Full Text] [Related]
16. [Effects of mechanical stimulation on expression of autoantigens in myoblasts]. Chen R; Liu X; Huang W; Zeng H; Shi D; Cao B; Liao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Sep; 27(9):1128-33. PubMed ID: 24279029 [TBL] [Abstract][Full Text] [Related]
17. Differential effects of static and cyclic stretching during elastase digestion on the mechanical properties of extracellular matrices. Jesudason R; Black L; Majumdar A; Stone P; Suki B J Appl Physiol (1985); 2007 Sep; 103(3):803-11. PubMed ID: 17540839 [TBL] [Abstract][Full Text] [Related]
18. Impact of uniaxial cyclic stretching on matrix-associated endothelial cell responses. Ren C; Chang Z; Li K; Wang X; Wang D; Xu Y; Li X; Li Q Mater Today Bio; 2024 Aug; 27():101152. PubMed ID: 39104901 [TBL] [Abstract][Full Text] [Related]
19. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Wang JH; Jia F; Yang G; Yang S; Campbell BH; Stone D; Woo SL Connect Tissue Res; 2003; 44(3-4):128-33. PubMed ID: 14504032 [TBL] [Abstract][Full Text] [Related]
20. Determination of optimal cyclic uniaxial stretches for stem cell-to-tenocyte differentiation under a wide range of mechanical stretch conditions by evaluating gene expression and protein synthesis levels. Morita Y; Watanabe S; Ju Y; Xu B Acta Bioeng Biomech; 2013; 15(3):71-9. PubMed ID: 24215499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]