These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31822715)

  • 1. Optimising non-invasive brain-computer interface systems for free communication between naïve human participants.
    Renton AI; Mattingley JB; Painter DR
    Sci Rep; 2019 Dec; 9(1):18705. PubMed ID: 31822715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asynchronous c-VEP communication tools-efficiency comparison of low-target, multi-target and dictionary-assisted BCI spellers.
    Gembler FW; Benda M; Rezeika A; Stawicki PR; Volosyak I
    Sci Rep; 2020 Oct; 10(1):17064. PubMed ID: 33051500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Relative Contribution of Deep Convolutional Neural Networks for SSVEP-Based Bio-Signal Decoding in BCI Speller Applications.
    Podmore JJ; Breckon TP; Aznan NKN; Connolly JD
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):611-618. PubMed ID: 30872236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A visual brain-computer interface as communication aid for patients with amyotrophic lateral sclerosis.
    Verbaarschot C; Tump D; Lutu A; Borhanazad M; Thielen J; van den Broek P; Farquhar J; Weikamp J; Raaphorst J; Groothuis JT; Desain P
    Clin Neurophysiol; 2021 Oct; 132(10):2404-2415. PubMed ID: 34454267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration on performance with P300-based BCI systems: a matter of interface features.
    da Silva-Sauer L; Valero-Aguayo L; de la Torre-Luque A; Ron-Angevin R; Varona-Moya S
    Appl Ergon; 2016 Jan; 52():325-32. PubMed ID: 26360225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A visual parallel-BCI speller based on the time-frequency coding strategy.
    Xu M; Chen L; Zhang L; Qi H; Ma L; Tang J; Wan B; Ming D
    J Neural Eng; 2014 Apr; 11(2):026014. PubMed ID: 24608672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier.
    Akram F; Han SM; Kim TS
    Comput Biol Med; 2015 Jan; 56():30-6. PubMed ID: 25464346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis.
    Guy V; Soriani MH; Bruno M; Papadopoulo T; Desnuelle C; Clerc M
    Ann Phys Rehabil Med; 2018 Jan; 61(1):5-11. PubMed ID: 29024794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial test of a T9-like P300-based speller by an ALS patient.
    Ron-Angevin R; Varona-Moya S; da Silva-Sauer L
    J Neural Eng; 2015 Aug; 12(4):046023. PubMed ID: 26083683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UMA-BCI Speller: An easily configurable P300 speller tool for end users.
    Velasco-Álvarez F; Sancha-Ros S; García-Garaluz E; Fernández-Rodríguez Á; Medina-Juliá MT; Ron-Angevin R
    Comput Methods Programs Biomed; 2019 Apr; 172():127-138. PubMed ID: 30902124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cost of space independence in P300-BCI spellers.
    Chennu S; Alsufyani A; Filetti M; Owen AM; Bowman H
    J Neuroeng Rehabil; 2013 Jul; 10():82. PubMed ID: 23895406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.
    Spuler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1087-90. PubMed ID: 26736454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive EEG-based BCI spellers from the beginning to today: a mini-review.
    Maslova O; Komarova Y; Shusharina N; Kolsanov A; Zakharov A; Garina E; Pyatin V
    Front Hum Neurosci; 2023; 17():1216648. PubMed ID: 37680264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.