BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31823185)

  • 1. Automated Misspelling Detection and Correction in Persian Clinical Text.
    Yazdani A; Ghazisaeedi M; Ahmadinejad N; Giti M; Amjadi H; Nahvijou A
    J Digit Imaging; 2020 Jun; 33(3):555-562. PubMed ID: 31823185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated misspelling detection and correction in clinical free-text records.
    Lai KH; Topaz M; Goss FR; Zhou L
    J Biomed Inform; 2015 Jun; 55():188-95. PubMed ID: 25917057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Spelling Correction for Clinical Text Mining in Russian.
    Balabaeva K; Funkner A; Kovalchuk S
    Stud Health Technol Inform; 2020 Jun; 270():43-47. PubMed ID: 32570343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tool-supported Interactive Correction and Semantic Annotation of Narrative Clinical Reports.
    Zvára K; Tomečková M; Peleška J; Svátek V; Zvárová J
    Methods Inf Med; 2017 May; 56(3):217-229. PubMed ID: 28451691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Language Processing for Automated Quantification of Brain Metastases Reported in Free-Text Radiology Reports.
    Senders JT; Karhade AV; Cote DJ; Mehrtash A; Lamba N; DiRisio A; Muskens IS; Gormley WB; Smith TR; Broekman MLD; Arnaout O
    JCO Clin Cancer Inform; 2019 Apr; 3():1-9. PubMed ID: 31002562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient prototype method to identify and correct misspellings in clinical text.
    Workman TE; Shao Y; Divita G; Zeng-Treitler Q
    BMC Res Notes; 2019 Jan; 12(1):42. PubMed ID: 30658682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unsupervised and customizable misspelling generator for mining noisy health-related text sources.
    Sarker A; Gonzalez-Hernandez G
    J Biomed Inform; 2018 Dec; 88():98-107. PubMed ID: 30445220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarity-Based Unsupervised Spelling Correction Using BioWordVec: Development and Usability Study of Bacterial Culture and Antimicrobial Susceptibility Reports.
    Kim T; Han SW; Kang M; Lee SH; Kim JH; Joo HJ; Sohn JW
    JMIR Med Inform; 2021 Feb; 9(2):e25530. PubMed ID: 33616536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection using natural language processing of radiologists recommendations for additional imaging of incidental findings.
    Dutta S; Long WJ; Brown DF; Reisner AT
    Ann Emerg Med; 2013 Aug; 62(2):162-9. PubMed ID: 23548405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Long Bone Fractures in Radiology Reports Using Natural Language Processing to support Healthcare Quality Improvement.
    Grundmeier RW; Masino AJ; Casper TC; Dean JM; Bell J; Enriquez R; Deakyne S; Chamberlain JM; Alpern ER;
    Appl Clin Inform; 2016 Nov; 7(4):1051-1068. PubMed ID: 27826610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Language Processing in Radiology: A Systematic Review.
    Pons E; Braun LM; Hunink MG; Kors JA
    Radiology; 2016 May; 279(2):329-43. PubMed ID: 27089187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automating Clinical Chart Review: An Open-Source Natural Language Processing Pipeline Developed on Free-Text Radiology Reports From Patients With Glioblastoma.
    Senders JT; Cho LD; Calvachi P; McNulty JJ; Ashby JL; Schulte IS; Almekkawi AK; Mehrtash A; Gormley WB; Smith TR; Broekman MLD; Arnaout O
    JCO Clin Cancer Inform; 2020 Jan; 4():25-34. PubMed ID: 31977252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of natural language processing on pediatric diagnostic radiology reports in the electronic health record to identify deep venous thrombosis in children.
    Gálvez JA; Pappas JM; Ahumada L; Martin JN; Simpao AF; Rehman MA; Witmer C
    J Thromb Thrombolysis; 2017 Oct; 44(3):281-290. PubMed ID: 28815363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Terminology Mapping in Clinical Text with Context-Sensitive Spelling Correction.
    Dziadek J; Henriksson A; Duneld M
    Stud Health Technol Inform; 2017; 235():241-245. PubMed ID: 28423790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inventory of tools for Dutch clinical language processing.
    Cornet R; Van Eldik A; De Keizer N
    Stud Health Technol Inform; 2012; 180():245-9. PubMed ID: 22874189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm.
    Bozkurt S; Alkim E; Banerjee I; Rubin DL
    J Digit Imaging; 2019 Aug; 32(4):544-553. PubMed ID: 31222557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated detection of ambiguity in BI-RADS assessment categories in mammography reports.
    Bozkurt S; Rubin D
    Stud Health Technol Inform; 2014; 197():35-9. PubMed ID: 24743074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Language Processing for Identification of Incidental Pulmonary Nodules in Radiology Reports.
    Kang SK; Garry K; Chung R; Moore WH; Iturrate E; Swartz JL; Kim DC; Horwitz LI; Blecker S
    J Am Coll Radiol; 2019 Nov; 16(11):1587-1594. PubMed ID: 31132331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of patients with carotid stenosis using natural language processing.
    Wu X; Zhao Y; Radev D; Malhotra A
    Eur Radiol; 2020 Jul; 30(7):4125-4133. PubMed ID: 32103365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Language Processing Technologies in Radiology Research and Clinical Applications.
    Cai T; Giannopoulos AA; Yu S; Kelil T; Ripley B; Kumamaru KK; Rybicki FJ; Mitsouras D
    Radiographics; 2016; 36(1):176-91. PubMed ID: 26761536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.