These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31823376)

  • 1. Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle.
    Jensen R; Nielsen J; Ørtenblad N
    J Physiol; 2020 Feb; 598(4):789-803. PubMed ID: 31823376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-induced change in T-system excitability and its major cause in rat fast-twitch skeletal muscle in vivo.
    Watanabe D; Wada M
    J Physiol; 2020 Nov; 598(22):5195-5211. PubMed ID: 32833287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transverse tubular system depolarization reduces tetanic force in rat skeletal muscle fibers by impairing action potential repriming.
    Dutka TL; Lamb GD
    Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2112-21. PubMed ID: 17329405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of reduced muscle glycogen on excitation-contraction coupling in rat fast-twitch muscle: a glycogen removal study.
    Watanabe D; Wada M
    J Muscle Res Cell Motil; 2019 Dec; 40(3-4):353-364. PubMed ID: 31236763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+-K+ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis.
    Dutka TL; Lamb GD
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C967-77. PubMed ID: 17553934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue.
    Cairns SP; Renaud JM
    J Physiol; 2023 Dec; 601(24):5669-5687. PubMed ID: 37934587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nitration in control of phosphorylase and glycogenolysis in mouse skeletal muscle.
    Blackwood SJ; Jude B; Mader T; Lanner JT; Katz A
    Am J Physiol Endocrinol Metab; 2021 Apr; 320(4):E691-E701. PubMed ID: 33554777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle.
    Cheng AJ; Willis SJ; Zinner C; Chaillou T; Ivarsson N; Ørtenblad N; Lanner JT; Holmberg HC; Westerblad H
    J Physiol; 2017 Dec; 595(24):7413-7426. PubMed ID: 28980321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue.
    Dutka TL; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2008 Feb; 586(3):875-87. PubMed ID: 18033812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased muscle glycogen content is associated with increased capacity to respond to T-system depolarisation in mechanically skinned skeletal muscle fibres from the rat.
    Barnes M; Gibson LM; Stephenson DG
    Pflugers Arch; 2001 Apr; 442(1):101-6. PubMed ID: 11374056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycogen content and contractile responsiveness to T-system depolarization in skinned muscle fibres of the rat.
    Goodman C; Blazev R; Stephenson G
    Clin Exp Pharmacol Physiol; 2005 Sep; 32(9):749-56. PubMed ID: 16173932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of contractile apparatus Ca2+ sensitivity and disruption of excitation-contraction coupling by S-nitrosoglutathione in rat muscle fibres.
    Dutka TL; Mollica JP; Posterino GS; Lamb GD
    J Physiol; 2011 May; 589(Pt 9):2181-96. PubMed ID: 21115647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors.
    Andersen B; Westergaard N
    Biochem J; 2002 Oct; 367(Pt 2):443-50. PubMed ID: 12099891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blocking ATP-sensitive K+ channel during metabolic inhibition impairs muscle contractility.
    Gramolini A; Renaud JM
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C1936-46. PubMed ID: 9227423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres.
    Nielsen J; Schrøder HD; Rix CG; Ortenblad N
    J Physiol; 2009 Jul; 587(Pt 14):3679-90. PubMed ID: 19470780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of K+ channels in the force recovery elicited by Na+-K+ pump stimulation in Ba2+-paralysed rat skeletal muscle.
    Clausen T; Overgaard K
    J Physiol; 2000 Sep; 527 Pt 2(Pt 2):325-32. PubMed ID: 10970433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.