BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

703 related articles for article (PubMed ID: 31823669)

  • 1. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation.
    Daou HN
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R296-R310. PubMed ID: 31823669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia.
    Bonetto A; Aydogdu T; Jin X; Zhang Z; Zhan R; Puzis L; Koniaris LG; Zimmers TA
    Am J Physiol Endocrinol Metab; 2012 Aug; 303(3):E410-21. PubMed ID: 22669242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNF-α and cancer cachexia: Molecular insights and clinical implications.
    Patel HJ; Patel BM
    Life Sci; 2017 Feb; 170():56-63. PubMed ID: 27919820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK.
    White JP; Puppa MJ; Gao S; Sato S; Welle SL; Carson JA
    Am J Physiol Endocrinol Metab; 2013 May; 304(10):E1042-52. PubMed ID: 23531613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Systemic and local mechanisms leading to cachexia in cancer].
    Grabiec K; Burchert M; Milewska M; Błaszczyk M; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2013 Dec; 67():1397-409. PubMed ID: 24493689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taurine Rescues Cancer-induced Atrophy in Human Skeletal Muscle Cells
    Chen CH; Chen YC; Chang YC; Hung CH; Huang CY; Tsai CL; Sun CK; Lin HY
    Anticancer Res; 2024 May; 44(5):1963-1971. PubMed ID: 38677769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting.
    Dave S; Patel BM
    Fundam Clin Pharmacol; 2023 Dec; 37(6):1079-1091. PubMed ID: 37474262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
    Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin 6 as a key regulator of muscle mass during cachexia.
    Carson JA; Baltgalvis KA
    Exerc Sport Sci Rev; 2010 Oct; 38(4):168-76. PubMed ID: 20871233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression.
    Huang Q; Wu M; Wu X; Zhang Y; Xia Y
    Biochim Biophys Acta Rev Cancer; 2022 Sep; 1877(5):188761. PubMed ID: 35850277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica, protects against muscle atrophy in a C26 colon cancer cachexia mouse model.
    Lee SB; Lee JS; Moon SO; Lee HD; Yoon YS; Son CG
    J Ethnopharmacol; 2021 Mar; 267():113470. PubMed ID: 33068652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.
    Yoshida T; Tabony AM; Galvez S; Mitch WE; Higashi Y; Sukhanov S; Delafontaine P
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2322-32. PubMed ID: 23769949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model.
    Chen T; Li B; Xu Y; Meng S; Wang Y; Jiang Y
    Oncol Rep; 2018 Aug; 40(2):1129-1137. PubMed ID: 29845270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced sucrose nonfermenting AMPK-related kinase (SNARK) activity aggravates cancer-induced skeletal muscle wasting.
    Alves CRR; MacDonald TL; Nigro P; Pathak P; Hirshman MF; Goodyear LJ; Lessard SJ
    Biomed Pharmacother; 2019 Sep; 117():109197. PubMed ID: 31387190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of interleukin-6 in cachexia: therapeutic implications.
    Narsale AA; Carson JA
    Curr Opin Support Palliat Care; 2014 Dec; 8(4):321-7. PubMed ID: 25319274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia.
    Molanouri Shamsi M; Chekachak S; Soudi S; Quinn LS; Ranjbar K; Chenari J; Yazdi MH; Mahdavi M
    Cytokine; 2017 Feb; 90():100-108. PubMed ID: 27863332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia.
    Ham DJ; Murphy KT; Chee A; Lynch GS; Koopman R
    Clin Nutr; 2014 Jun; 33(3):448-58. PubMed ID: 23835111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing Metabolic Dysregulation in Muscle During Cachexia.
    Hsu MY; Porporato PE; Wyart E
    Methods Mol Biol; 2019; 1928():337-352. PubMed ID: 30725463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response.
    Guo D; Wang C; Wang Q; Qiao Z; Tang H
    Oncotarget; 2017 Jun; 8(24):39640-39648. PubMed ID: 28489606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.