These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31824223)

  • 1. Theory of the flow-induced deformation of shallow compliant microchannels with thick walls.
    Wang X; Christov IC
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190513. PubMed ID: 31824223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static response of deformable microchannels: a comparative modelling study.
    Shidhore TC; Christov IC
    J Phys Condens Matter; 2018 Feb; 30(5):054002. PubMed ID: 29244030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-induced deformation of shallow microfluidic channels.
    Gervais T; El-Ali J; Günther A; Jensen KF
    Lab Chip; 2006 Apr; 6(4):500-7. PubMed ID: 16572212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances.
    Roh C; Lee J; Kang C
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation properties between fluid and periodic circular obstacles in polydimethylsiloxane microchannels: Experimental and numerical investigations under various conditions.
    Kang C; Overfelt RA; Roh C
    Biomicrofluidics; 2013; 7(5):54102. PubMed ID: 24404065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits.
    Christov IC
    J Phys Condens Matter; 2021 Nov; 34(6):. PubMed ID: 34678790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling a soft solid layer to passively control the conduit shape in a compliant microchannel during flow.
    Karan P; Chakraborty J; Chakraborty S; Wereley ST; Christov IC
    Phys Rev E; 2021 Jul; 104(1-2):015108. PubMed ID: 34412219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravity-induced swirl of nanoparticles in microfluidics.
    Zhao C; Oztekin A; Cheng X
    J Nanopart Res; 2013 Apr; 15():1611. PubMed ID: 24563612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Pressure Drop in Viscoelastic Polydimethylsiloxane Wall Channels.
    Kim AR; Mitra SK; Zhao B
    Langmuir; 2021 Dec; 37(49):14292-14301. PubMed ID: 34846896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels.
    Stan CA; Guglielmini L; Ellerbee AK; Caviezel D; Stone HA; Whitesides GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036302. PubMed ID: 22060487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging Viscous Peeling to Create and Activate Soft Actuators and Microfluidic Devices.
    Salem L; Gamus B; Or Y; Gat AD
    Soft Robot; 2020 Feb; 7(1):76-84. PubMed ID: 31657671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectrokinetic turbulence in microfluidics at low Reynolds number.
    Wang G; Yang F; Zhao W
    Phys Rev E; 2016 Jan; 93(1):013106. PubMed ID: 26871154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splitting and separation of colloidal streams in sinusoidal microchannels.
    Schlenk M; Drechsler M; Karg M; Zimmermann W; Trebbin M; Förster S
    Lab Chip; 2018 Oct; 18(20):3163-3171. PubMed ID: 30187066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-induced deformation in a microchannel with a non-Newtonian fluid.
    Raj M K; Chakraborty J; DasGupta S; Chakraborty S
    Biomicrofluidics; 2018 May; 12(3):034116. PubMed ID: 30018695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels.
    Kuksenok O; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011502. PubMed ID: 12935145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric pumping in autophoretic channels.
    Michelin S; Montenegro-Johnson TD; De Canio G; Lobato-Dauzier N; Lauga E
    Soft Matter; 2015 Aug; 11(29):5804-11. PubMed ID: 26000567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion of an elastic capsule in a square microfluidic channel.
    Kuriakose S; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011906. PubMed ID: 21867212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastohydrodynamic Relaxation of Soft and Deformable Microchannels.
    Guyard G; Restagno F; McGraw JD
    Phys Rev Lett; 2022 Nov; 129(20):204501. PubMed ID: 36462008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.