BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31824223)

  • 1. Theory of the flow-induced deformation of shallow compliant microchannels with thick walls.
    Wang X; Christov IC
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190513. PubMed ID: 31824223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static response of deformable microchannels: a comparative modelling study.
    Shidhore TC; Christov IC
    J Phys Condens Matter; 2018 Feb; 30(5):054002. PubMed ID: 29244030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-induced deformation of shallow microfluidic channels.
    Gervais T; El-Ali J; Günther A; Jensen KF
    Lab Chip; 2006 Apr; 6(4):500-7. PubMed ID: 16572212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances.
    Roh C; Lee J; Kang C
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation properties between fluid and periodic circular obstacles in polydimethylsiloxane microchannels: Experimental and numerical investigations under various conditions.
    Kang C; Overfelt RA; Roh C
    Biomicrofluidics; 2013; 7(5):54102. PubMed ID: 24404065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits.
    Christov IC
    J Phys Condens Matter; 2021 Nov; 34(6):. PubMed ID: 34678790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling a soft solid layer to passively control the conduit shape in a compliant microchannel during flow.
    Karan P; Chakraborty J; Chakraborty S; Wereley ST; Christov IC
    Phys Rev E; 2021 Jul; 104(1-2):015108. PubMed ID: 34412219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravity-induced swirl of nanoparticles in microfluidics.
    Zhao C; Oztekin A; Cheng X
    J Nanopart Res; 2013 Apr; 15():1611. PubMed ID: 24563612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Pressure Drop in Viscoelastic Polydimethylsiloxane Wall Channels.
    Kim AR; Mitra SK; Zhao B
    Langmuir; 2021 Dec; 37(49):14292-14301. PubMed ID: 34846896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels.
    Stan CA; Guglielmini L; Ellerbee AK; Caviezel D; Stone HA; Whitesides GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036302. PubMed ID: 22060487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging Viscous Peeling to Create and Activate Soft Actuators and Microfluidic Devices.
    Salem L; Gamus B; Or Y; Gat AD
    Soft Robot; 2020 Feb; 7(1):76-84. PubMed ID: 31657671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectrokinetic turbulence in microfluidics at low Reynolds number.
    Wang G; Yang F; Zhao W
    Phys Rev E; 2016 Jan; 93(1):013106. PubMed ID: 26871154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splitting and separation of colloidal streams in sinusoidal microchannels.
    Schlenk M; Drechsler M; Karg M; Zimmermann W; Trebbin M; Förster S
    Lab Chip; 2018 Oct; 18(20):3163-3171. PubMed ID: 30187066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-induced deformation in a microchannel with a non-Newtonian fluid.
    Raj M K; Chakraborty J; DasGupta S; Chakraborty S
    Biomicrofluidics; 2018 May; 12(3):034116. PubMed ID: 30018695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels.
    Kuksenok O; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011502. PubMed ID: 12935145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric pumping in autophoretic channels.
    Michelin S; Montenegro-Johnson TD; De Canio G; Lobato-Dauzier N; Lauga E
    Soft Matter; 2015 Aug; 11(29):5804-11. PubMed ID: 26000567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion of an elastic capsule in a square microfluidic channel.
    Kuriakose S; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011906. PubMed ID: 21867212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastohydrodynamic Relaxation of Soft and Deformable Microchannels.
    Guyard G; Restagno F; McGraw JD
    Phys Rev Lett; 2022 Nov; 129(20):204501. PubMed ID: 36462008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.