BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31824291)

  • 21. GABA-ergic transmission in deep cerebellar nuclei.
    Sastry BR; Morishita W; Yip S; Shew T
    Prog Neurobiol; 1997 Oct; 53(2):259-71. PubMed ID: 9364613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons.
    Valeeva G; Tressard T; Mukhtarov M; Baude A; Khazipov R
    J Neurosci; 2016 Jun; 36(22):5961-73. PubMed ID: 27251618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The transgenic mouse line Igsf9-eGFP allows targeted stimulation of inferior olive efferents.
    Pätz C; Brachtendorf S; Eilers J
    J Neurosci Methods; 2018 Feb; 296():84-92. PubMed ID: 29291926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.
    Tsubota T; Ohashi Y; Tamura K
    Behav Brain Res; 2013 Oct; 255():26-34. PubMed ID: 23623886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning.
    Sano T; Kohyama-Koganeya A; Kinoshita MO; Tatsukawa T; Shimizu C; Oshima E; Yamada K; Le TD; Akagi T; Tohyama K; Nagao S; Hirabayashi Y
    Neurosci Res; 2018 Nov; 136():33-47. PubMed ID: 29481883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Astrocytic processes compensate for the apparent lack of GABA transporters in the axon terminals of cerebellar Purkinje cells.
    Ribak CE; Tong WM; Brecha NC
    Anat Embryol (Berl); 1996 Oct; 194(4):379-90. PubMed ID: 8896702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei.
    Gauck V; Jaeger D
    J Neurosci; 2003 Sep; 23(22):8109-18. PubMed ID: 12954873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Obata K; Knöpfel T
    J Neurophysiol; 2007 Jan; 97(1):901-11. PubMed ID: 17093116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants.
    Sotelo C; Alvarado-Mallart RM
    Neuroscience; 1987 Jan; 20(1):1-22. PubMed ID: 3561760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.
    Najac M; Raman IM
    J Neurosci; 2015 Jan; 35(2):544-9. PubMed ID: 25589749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum.
    El-Shamayleh Y; Kojima Y; Soetedjo R; Horwitz GD
    Neuron; 2017 Jul; 95(1):51-62.e4. PubMed ID: 28648497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toluene decreases Purkinje cell output by enhancing inhibitory synaptic transmission in the cerebellar cortex.
    Gmaz JM; McKay BE
    Neurosci Lett; 2014 Feb; 560():1-6. PubMed ID: 24345417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptic organization of the mouse cerebellar cortex in organotypic slice cultures.
    Dupont JL; Fourcaudot E; Beekenkamp H; Poulain B; Bossu JL
    Cerebellum; 2006; 5(4):243-56. PubMed ID: 17134987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei.
    Ouardouz M; Sastry BR
    J Neurophysiol; 2000 Sep; 84(3):1414-21. PubMed ID: 10980014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of electrical activity in horizontal axon growth in the developing cortex: a time-lapse study using optogenetic stimulation.
    Malyshevskaya O; Shiraishi Y; Kimura F; Yamamoto N
    PLoS One; 2013; 8(12):e82954. PubMed ID: 24376616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum.
    Aizenman CD; Linden DJ
    J Neurophysiol; 1999 Oct; 82(4):1697-709. PubMed ID: 10515960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells.
    Hirono M; Ogawa Y; Misono K; Zollinger DR; Trimmer JS; Rasband MN; Misonou H
    J Neurosci; 2015 May; 35(18):7082-94. PubMed ID: 25948259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacological characterization of pre- and postsynaptic GABAB receptors in the deep nuclei of rat cerebellar slices.
    Morishita W; Sastry BR
    Neuroscience; 1995 Oct; 68(4):1127-37. PubMed ID: 8544987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.