These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31824493)

  • 1.
    Michel-Todó L; Reche PA; Bigey P; Pinazo MJ; Gascón J; Alonso-Padilla J
    Front Immunol; 2019; 10():2698. PubMed ID: 31824493
    [No Abstract]   [Full Text] [Related]  

  • 2. A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease.
    Serna C; Lara JA; Rodrigues SP; Marques AF; Almeida IC; Maldonado RA
    Vaccine; 2014 Jun; 32(28):3525-32. PubMed ID: 24793944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From genome screening to creation of vaccine against Trypanosoma cruzi by use of immunoinformatics.
    Teh-Poot C; Tzec-Arjona E; Martínez-Vega P; Ramirez-Sierra MJ; Rosado-Vallado M; Dumonteil E
    J Infect Dis; 2015 Jan; 211(2):258-66. PubMed ID: 25070943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of antigenic proteins of Trypanosoma cruzi to fabricate an epitope-based subunit vaccine by exploiting epitope mapping mechanism.
    Khatoon N; Ojha R; Mishra A; Prajapati VK
    Vaccine; 2018 Oct; 36(42):6290-6300. PubMed ID: 30217522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An immunoinformatic approach for identification of Trypanosoma cruzi HLA-A2-restricted CD8(+) T cell epitopes.
    Eickhoff CS; Van Aartsen D; Terry FE; Meymandi SK; Traina MM; Hernandez S; Martin WD; Moise L; De Groot AS; Hoft DF
    Hum Vaccin Immunother; 2015; 11(9):2322-8. PubMed ID: 26107442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From proteome to candidate vaccines: target discovery and molecular dynamics-guided multi-epitope vaccine engineering against kissing bug.
    Albaqami FF; Altharawi A; Althurwi HN; Alharthy KM
    Front Immunol; 2024; 15():1413893. PubMed ID: 38915396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Prediction of Trypanosoma cruzi Epitopes Toward the Generation of an Epitope-Based Vaccine Against Chagas Disease.
    Ros-Lucas A; Rioja-Soto D; Gascón J; Alonso-Padilla J
    Methods Mol Biol; 2023; 2673():487-504. PubMed ID: 37258934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a combination DNA vaccine for the prevention and therapy of Trypanosoma cruzi infection in mice: role of CD4+ and CD8+ T cells.
    Limon-Flores AY; Cervera-Cetina R; Tzec-Arjona JL; Ek-Macias L; Sánchez-Burgos G; Ramirez-Sierra MJ; Cruz-Chan JV; VanWynsberghe NR; Dumonteil E
    Vaccine; 2010 Oct; 28(46):7414-9. PubMed ID: 20850536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved epitopes in variants of amastin protein of Trypanosoma cruzi for vaccine design: A bioinformatics approach.
    Slathia PS; Sharma P
    Microb Pathog; 2018 Dec; 125():423-430. PubMed ID: 30296452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanosoma cruzi paraflagellar rod proteins 2 and 3 contain immunodominant CD8(+) T-cell epitopes that are recognized by cytotoxic T cells from Chagas disease patients.
    Egui A; Thomas MC; Morell M; Marañón C; Carrilero B; Segovia M; Puerta CJ; Pinazo MJ; Rosas F; Gascón J; López MC
    Mol Immunol; 2012 Oct; 52(3-4):289-98. PubMed ID: 22750229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vaccine-Linked Chemotherapy Improves Benznidazole Efficacy for Acute Chagas Disease.
    Jones K; Versteeg L; Damania A; Keegan B; Kendricks A; Pollet J; Cruz-Chan JV; Gusovsky F; Hotez PJ; Bottazzi ME
    Infect Immun; 2018 Apr; 86(4):. PubMed ID: 29311242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved proteomic approach for the discovery of potential vaccine targets in Trypanosoma cruzi.
    Nakayasu ES; Sobreira TJ; Torres R; Ganiko L; Oliveira PS; Marques AF; Almeida IC
    J Proteome Res; 2012 Jan; 11(1):237-46. PubMed ID: 22115061
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Trevisan RO; Santos MM; Desidério CS; Alves LG; de Jesus Sousa T; de Castro Oliveira L; Jaiswal AK; Tiwari S; Bovi WG; de Oliveira-Silva M; Costa-Madeira JC; Castellano LRC; Silva MV; Azevedo V; Rodrigues Junior V; Oliveira CJF; de Castro Soares S
    Dis Markers; 2020; 2020():9130719. PubMed ID: 33488847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of multiple HLA-A*0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients.
    Fonseca SG; Moins-Teisserenc H; Clave E; Ianni B; Nunes VL; Mady C; Iwai LK; Sette A; Sidney J; Marin ML; Goldberg AC; Guilherme L; Charron D; Toubert A; Kalil J; Cunha-Neto E
    Microbes Infect; 2005 Apr; 7(4):688-97. PubMed ID: 15848276
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Gupta S; Salgado-Jiménez B; Lokugamage N; Vázquez-Chagoyán JC; Garg NJ
    Front Immunol; 2019; 10():1456. PubMed ID: 31293599
    [No Abstract]   [Full Text] [Related]  

  • 16. TcVac1 vaccine delivery by intradermal electroporation enhances vaccine induced immune protection against Trypanosoma cruzi infection in mice.
    Hegazy-Hassan W; Zepeda-Escobar JA; Ochoa-García L; Contreras-Ortíz JME; Tenorio-Borroto E; Barbabosa-Pliego A; Aparicio-Burgos JE; Oros-Pantoja R; Rivas-Santiago B; Díaz-Albiter H; Garg NJ; Vázquez-Chagoyán JC
    Vaccine; 2019 Jan; 37(2):248-257. PubMed ID: 30497833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preventive and therapeutic DNA vaccination partially protect dogs against an infectious challenge with Trypanosoma cruzi.
    Quijano-Hernández IA; Castro-Barcena A; Vázquez-Chagoyán JC; Bolio-González ME; Ortega-López J; Dumonteil E
    Vaccine; 2013 Apr; 31(18):2246-52. PubMed ID: 23499599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immuno-informatics Analysis to Identify Novel Vaccine Candidates and Design of a Multi-Epitope Based Vaccine Candidate Against
    Kar PP; Srivastava A
    Front Immunol; 2018; 9():2213. PubMed ID: 30374343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxoplasma gondii: Vaccination with a DNA vaccine encoding T- and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice.
    Cao A; Liu Y; Wang J; Li X; Wang S; Zhao Q; Cong H; He S; Zhou H
    Vaccine; 2015 Nov; 33(48):6757-62. PubMed ID: 26518401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches.
    Rawal K; Sinha R; Abbasi BA; Chaudhary A; Nath SK; Kumari P; Preeti P; Saraf D; Singh S; Mishra K; Gupta P; Mishra A; Sharma T; Gupta S; Singh P; Sood S; Subramani P; Dubey AK; Strych U; Hotez PJ; Bottazzi ME
    Sci Rep; 2021 Sep; 11(1):17626. PubMed ID: 34475453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.