BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31824754)

  • 1. Amino acids and acylcarnitine production by
    Ballesteros-Torres JM; Samaniego-Moreno L; Gomez-Flores R; Tamez-Guerra RS; Rodríguez-Padilla C; Tamez-Guerra P
    PeerJ; 2019; 7():e7977. PubMed ID: 31824754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid and biodiesel production by cultivation isolated strain
    Asadi P; Rad HA; Qaderi F
    J Environ Health Sci Eng; 2020 Dec; 18(2):573-585. PubMed ID: 33312584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents.
    Asadi P; Rad HA; Qaderi F
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29473-29489. PubMed ID: 31396874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-culture of microalga Chlorella sorokiniana with syntrophic Streptomyces thermocarboxydus in cassava wastewater for wastewater treatment and biodiesel production.
    Padri M; Boontian N; Teaumroong N; Piromyou P; Piasai C
    Bioresour Technol; 2022 Mar; 347():126732. PubMed ID: 35074466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of non-sterilized wastewater purification and high-level CO
    Qin Y; Wang XW; Lian J; Zhao QF; Jiang HB
    Sci Total Environ; 2023 May; 873():162442. PubMed ID: 36842589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Metabolomic Analysis of the Green Microalga Chlorella sorokiniana Cultivated in the Single Culture and a Consortium with Bacteria for Wastewater Remediation.
    Chen T; Zhao Q; Wang L; Xu Y; Wei W
    Appl Biochem Biotechnol; 2017 Nov; 183(3):1062-1075. PubMed ID: 28500414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production.
    Chen CY; Kuo EW; Nagarajan D; Ho SH; Dong CD; Lee DJ; Chang JS
    Bioresour Technol; 2020 Apr; 302():122814. PubMed ID: 32004812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photoautotrophic growth of Chlorella vulgaris in starch wastewater through photo-regulation strategy.
    Ren H; Zhu G; Ni J; Shen M; Show PL; Sun FF
    Chemosphere; 2022 Nov; 307(Pt 1):135533. PubMed ID: 35787884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of plant biostimulating properties of Chlorella sorokiniana biomass produced in batch and semi-continuous systems supplemented with pig manure or acetate.
    Stirk WA; Bálint P; Široká J; Novák O; Rétfalvi T; Berzsenyi Z; Notterpek J; Varga Z; Maróti G; van Staden J; Strnad M; Ördög V
    J Biotechnol; 2024 Feb; 381():27-35. PubMed ID: 38190851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of
    Yun HS; Kim YS; Yoon HS
    Heliyon; 2020 Jul; 6(7):e04447. PubMed ID: 32743091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.
    Fernández-Linares LC; Guerrero Barajas C; Durán Páramo E; Badillo Corona JA
    Bioresour Technol; 2017 Nov; 244(Pt 1):400-406. PubMed ID: 28783567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohydrogen production coupled with wastewater treatment using selected microalgae.
    Satheesh S; Pugazhendi A; Al-Mur BA; Balasubramani R
    Chemosphere; 2023 Sep; 334():138932. PubMed ID: 37209846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater.
    Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS
    Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of culture conditions on biomass yield of acclimatized microalgae in ozone pre-treated tannery effluent: A simultaneous exploration of bioremediation and lipid accumulation potential.
    Saranya D; Shanthakumar S
    J Environ Manage; 2020 Nov; 273():111129. PubMed ID: 32758913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation.
    Morando-Grijalva CA; Vázquez-Larios AL; Alcántara-Hernández RJ; Ortega-Clemente LA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28575-28584. PubMed ID: 32212076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Contribution Ratio of Autotrophic and Heterotrophic Metabolism during a Mixotrophic Culture of
    Park JE; Zhang S; Han TH; Hwang SJ
    Int J Environ Res Public Health; 2021 Feb; 18(3):. PubMed ID: 33540891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgae as promising source for integrated wastewater treatment and biodiesel production.
    Fal S; Benhima R; El Mernissi N; Kasmi Y; Smouni A; El Arroussi H
    Int J Phytoremediation; 2022; 24(1):34-46. PubMed ID: 34000939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement.
    Hena S; Fatihah N; Tabassum S; Ismail N
    Water Res; 2015 Sep; 80():346-56. PubMed ID: 26043271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprocess operation strategies with mixotrophy/photoinduction to enhance lutein production of microalga Chlorella sorokiniana FZU60.
    Xie Y; Li J; Ma R; Ho SH; Shi X; Liu L; Chen J
    Bioresour Technol; 2019 Oct; 290():121798. PubMed ID: 31325840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources.
    Ramanna L; Guldhe A; Rawat I; Bux F
    Bioresour Technol; 2014 Sep; 168():127-35. PubMed ID: 24768415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.