These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31824929)

  • 1. Rational Engineering of Phenylalanine Accumulation in
    Otto M; Wynands B; Lenzen C; Filbig M; Blank LM; Wierckx N
    Front Bioeng Biotechnol; 2019; 7():312. PubMed ID: 31824929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a Pseudomonas taiwanensis 4-coumarate platform for production of para-hydroxy aromatics with high yield and specificity.
    Wynands B; Kofler F; Sieberichs A; da Silva N; Wierckx N
    Metab Eng; 2023 Jul; 78():115-127. PubMed ID: 37209862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production.
    Wynands B; Lenzen C; Otto M; Koch F; Blank LM; Wierckx N
    Metab Eng; 2018 May; 47():121-133. PubMed ID: 29548982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered
    Lenzen C; Wynands B; Otto M; Bolzenius J; Mennicken P; Blank LM; Wierckx N
    Front Bioeng Biotechnol; 2019; 7():130. PubMed ID: 31245364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streamlined
    Wynands B; Otto M; Runge N; Preckel S; Polen T; Blank LM; Wierckx N
    ACS Synth Biol; 2019 Sep; 8(9):2036-2050. PubMed ID: 31465206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose.
    Nijkamp K; Westerhof RG; Ballerstedt H; de Bont JA; Wery J
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):617-24. PubMed ID: 17111138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.
    Nijkamp K; van Luijk N; de Bont JA; Wery J
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):170-7. PubMed ID: 15824922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering phenylalanine ammonia lyase to limit feedback inhibition by cinnamate and enhance biotransformation.
    Pavale S; Dalei SK; Sokhal P; Biswas B; Meena K; Adlakha N
    Biotechnol J; 2024 Jan; 19(1):e2300275. PubMed ID: 37861236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutively solvent-tolerant Pseudomonas taiwanensis VLB120∆ C∆ ttgV supports particularly high-styrene epoxidation activities when grown under glucose excess conditions.
    Volmer J; Lindmeyer M; Seipp J; Schmid A; Bühler B
    Biotechnol Bioeng; 2019 May; 116(5):1089-1101. PubMed ID: 30636283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas putida as a platform for the synthesis of aromatic compounds.
    Molina-Santiago C; Cordero BF; Daddaoua A; Udaondo Z; Manzano J; Valdivia M; Segura A; Ramos JL; Duque E
    Microbiology (Reading); 2016 Sep; 162(9):1535-1543. PubMed ID: 27417954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.
    Verhoef S; Ruijssenaars HJ; de Bont JA; Wery J
    J Biotechnol; 2007 Oct; 132(1):49-56. PubMed ID: 17900735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering styrene biosynthesis: designing a functional trans-cinnamic acid decarboxylase in Pseudomonas.
    García-Franco A; Godoy P; Duque E; Ramos JL
    Microb Cell Fact; 2024 Feb; 23(1):69. PubMed ID: 38419048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity.
    Volmer J; Neumann C; Bühler B; Schmid A
    Appl Environ Microbiol; 2014 Oct; 80(20):6539-48. PubMed ID: 25128338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.
    Vargas-Tah A; Gosset G
    Front Bioeng Biotechnol; 2015; 3():116. PubMed ID: 26347861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of
    Sivapuratharasan V; Lenzen C; Michel C; Muthukrishnan AB; Jayaraman G; Blank LM
    Metab Eng Commun; 2022 Dec; 15():e00202. PubMed ID: 36017490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerance and metabolic response of
    Wordofa GG; Kristensen M
    Biotechnol Biofuels; 2018; 11():199. PubMed ID: 30034525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Styrene biosynthesis from glucose by engineered E. coli.
    McKenna R; Nielsen DR
    Metab Eng; 2011 Sep; 13(5):544-54. PubMed ID: 21722749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120.
    Bretschneider L; Heuschkel I; Bühler K; Karande R; Bühler B
    Metab Eng; 2022 Mar; 70():206-217. PubMed ID: 35085781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
    McKenna R; Thompson B; Pugh S; Nielsen DR
    Microb Cell Fact; 2014 Aug; 13():123. PubMed ID: 25162943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benzoate Synthesis from Glucose or Glycerol Using Engineered Pseudomonas taiwanensis.
    Otto M; Wynands B; Marienhagen J; Blank LM; Wierckx N
    Biotechnol J; 2020 Nov; 15(11):e2000211. PubMed ID: 32721071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.