These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31825227)

  • 1. Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures.
    Wiecha PR; Muskens OL
    Nano Lett; 2020 Jan; 20(1):329-338. PubMed ID: 31825227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive deep learning method for empirical spectral prediction and its quantitative validation of nano-structured dimers.
    Verma S; Chugh S; Ghosh S; Rahman BMA
    Sci Rep; 2023 Jan; 13(1):1129. PubMed ID: 36670171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles.
    So S; Mun J; Rho J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24264-24268. PubMed ID: 31199610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nanoparticle simulations and inverse design using machine learning.
    He J; He C; Zheng C; Wang Q; Ye J
    Nanoscale; 2019 Sep; 11(37):17444-17459. PubMed ID: 31531431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic nanostructure design and characterization via Deep Learning.
    Malkiel I; Mrejen M; Nagler A; Arieli U; Wolf L; Suchowski H
    Light Sci Appl; 2018; 7():60. PubMed ID: 30863544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically resonant dielectric nanostructures.
    Kuznetsov AI; Miroshnichenko AE; Brongersma ML; Kivshar YS; Luk'yanchuk B
    Science; 2016 Nov; 354(6314):. PubMed ID: 27856851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition.
    Lee EK; Song JH; Jeong KY; Kang JH; Park HG; Seo MK
    Sci Rep; 2015 May; 5():10400. PubMed ID: 25988729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bidirectional Deep Neural Network for Accurate Silicon Color Design.
    Gao L; Li X; Liu D; Wang L; Yu Z
    Adv Mater; 2019 Dec; 31(51):e1905467. PubMed ID: 31696973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions.
    Xu X; Aggarwal D; Shankar K
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metasurface-Based Molecular Biosensing Aided by Artificial Intelligence.
    Tittl A; John-Herpin A; Leitis A; Arvelo ER; Altug H
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):14810-14822. PubMed ID: 31021045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultimate Limit of Light Extinction by Nanophotonic Structures.
    Yang ZJ; Antosiewicz TJ; Verre R; García de Abajo FJ; Apell SP; Käll M
    Nano Lett; 2015 Nov; 15(11):7633-8. PubMed ID: 26478949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for accelerated all-dielectric metasurface design.
    Nadell CC; Huang B; Malof JM; Padilla WJ
    Opt Express; 2019 Sep; 27(20):27523-27535. PubMed ID: 31684518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations.
    Toledo-Marín JQ; Fox G; Sluka JP; Glazier JA
    Front Physiol; 2021; 12():667828. PubMed ID: 34248661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale.
    Yao K; Unni R; Zheng Y
    Nanophotonics; 2019 Mar; 8(3):339-366. PubMed ID: 34290952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Neural Network Modelling for Optimizing the Optical Parameters of Plasmonic Paired Nanostructures.
    Verma S; Chugh S; Ghosh S; Rahman BMA
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks.
    Yan R; Wang T; Jiang X; Huang X; Wang L; Yue X; Wang H; Wang Y
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Shot Phase Image Distinction of Plasmonic and Dielectric Nanoparticles.
    Saemisch L; van Hulst NF; Liebel M
    Nano Lett; 2021 May; 21(9):4021-4028. PubMed ID: 33899486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance Model of Cylindrical Nanowires for Metamaterial Applications.
    Alam M; Mahmood A; Azam S; Butt MS; Haq AU; Massoud Y
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31374968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.