BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31825305)

  • 1. Cell death in Leishmania.
    Basmaciyan L; Casanova M
    Parasite; 2019; 26():71. PubMed ID: 31825305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A potential acetyltransferase involved in Leishmania major metacaspase-dependent cell death.
    Basmaciyan L; Azas N; Casanova M
    Parasit Vectors; 2019 May; 12(1):266. PubMed ID: 31133064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed cell death in Leishmania: biochemical evidence and role in parasite infectivity.
    Gannavaram S; Debrabant A
    Front Cell Infect Microbiol; 2012; 2():95. PubMed ID: 22919685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel hydrolase with a pro-death activity from the protozoan parasite
    Basmaciyan L; Jacquet P; Azas N; Casanova M
    Cell Death Discov; 2019; 5():99. PubMed ID: 31149349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite.
    Raj S; Sasidharan S; Balaji SN; Saudagar P
    Parasitol Res; 2020 Jul; 119(7):2025-2037. PubMed ID: 32504119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leishmaniasis and glycosaminoglycans: a future therapeutic strategy?
    Merida-de-Barros DA; Chaves SP; Belmiro CLR; Wanderley JLM
    Parasit Vectors; 2018 Oct; 11(1):536. PubMed ID: 30285837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auranofin is an apoptosis-simulating agent with in vitro and in vivo anti-leishmanial activity.
    Sharlow ER; Leimgruber S; Murray S; Lira A; Sciotti RJ; Hickman M; Hudson T; Leed S; Caridha D; Barrios AM; Close D; Grögl M; Lazo JS
    ACS Chem Biol; 2014 Mar; 9(3):663-72. PubMed ID: 24328400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring spatial co-occurrences of species potentially involved in Leishmania transmission cycles through a predictive and fieldwork approach.
    López M; Erazo D; Hoyos J; León C; Fuya P; Lugo L; Cordovez JM; González C
    Sci Rep; 2021 Mar; 11(1):6789. PubMed ID: 33762622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sand flies, Leishmania, and transcriptome-borne solutions.
    Oliveira F; Jochim RC; Valenzuela JG; Kamhawi S
    Parasitol Int; 2009 Mar; 58(1):1-5. PubMed ID: 18768167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-Based Approaches Reveal Potential Therapeutic Targets for Host-Directed Antileishmanial Therapy Driving Drug Repurposing.
    Martinez-Hernandez JE; Hammoud Z; de Sousa AM; Kramer F; Monte-Neto RLD; Maracaja-Coutinho V; Martin AJM
    Microbiol Spectr; 2021 Oct; 9(2):e0101821. PubMed ID: 34668739
    [No Abstract]   [Full Text] [Related]  

  • 11. Phenotypical characteristics, biochemical pathways, molecular targets and putative role of nitric oxide-mediated programmed cell death in Leishmania.
    Holzmuller P; Bras-Gonçalves R; Lemesre JL
    Parasitology; 2006; 132 Suppl():S19-32. PubMed ID: 17018162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcein+/PI- as an early apoptotic feature in Leishmania.
    Basmaciyan L; Azas N; Casanova M
    PLoS One; 2017; 12(11):e0187756. PubMed ID: 29112976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are protozoan metacaspases potential parasite killers?
    Meslin B; Zalila H; Fasel N; Picot S; Bienvenu AL
    Parasit Vectors; 2011 Feb; 4():26. PubMed ID: 21356053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A3K2A3-induced apoptotic cell death of Leishmania amazonensis occurs through caspase- and ATP-dependent mitochondrial dysfunction.
    Garcia FP; Henrique da Silva Rodrigues J; Din ZU; Rodrigues-Filho E; Ueda-Nakamura T; Auzély-Velty R; Nakamura CV
    Apoptosis; 2017 Jan; 22(1):57-71. PubMed ID: 27761752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leishmaniasis: the act of transmission.
    Serafim TD; Coutinho-Abreu IV; Dey R; Kissinger R; Valenzuela JG; Oliveira F; Kamhawi S
    Trends Parasitol; 2021 Nov; 37(11):976-987. PubMed ID: 34389215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dihydro-beta-agarofuran sesquiterpenes: a new class of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in the protozoan parasite Leishmania.
    Cortés-Selva F; Jiménez IA; Munoz-Martínez F; Campillo M; Bazzocchi IL; Pardo L; Ravelo AG; Castanys S; Gamarro F
    Curr Pharm Des; 2005; 11(24):3125-39. PubMed ID: 16178749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protease inhibitors in potential drug development for Leishmaniasis.
    Das P; Alam MN; Paik D; Karmakar K; De T; Chakraborti T
    Indian J Biochem Biophys; 2013 Oct; 50(5):363-76. PubMed ID: 24772958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Bax in the apoptosis of Leishmania-infected macrophages.
    Aghaei M; KhanAhmad H; Aghaei S; Ali Nilforoushzadeh M; Mohaghegh MA; Hejazi SH
    Microb Pathog; 2020 Feb; 139():103892. PubMed ID: 31778755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiparasitic chemotherapy: tinkering with the purine salvage pathway.
    Datta AK; Datta R; Sen B
    Adv Exp Med Biol; 2008; 625():116-32. PubMed ID: 18365663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches.
    Uzcanga G; Lara E; Gutiérrez F; Beaty D; Beske T; Teran R; Navarro JC; Pasero P; Benítez W; Poveda A
    Crit Rev Microbiol; 2017 Mar; 43(2):156-177. PubMed ID: 27960617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.